In this work, we present a method for obtaining an implicit objective function for vision-based navigation. The proposed methodology relies on Imitation Learning, Model Predictive Control (MPC), and an interpretation technique used in Deep Neural Networks. We use Imitation Learning as a means to do Inverse Reinforcement Learning in order to create an approximate cost function generator for a visual navigation challenge. The resulting cost function, the costmap, is used in conjunction with MPC for real-time control and outperforms other state-of-the-art costmap generators in novel environments. The proposed process allows for simple training and robustness to out-of-sample data. We apply our method to the task of vision-based autonomous driving in multiple real and simulated environments and show its generalizability.
翻译:在这项工作中,我们提出了一个获得基于愿景的导航隐含目标功能的方法。拟议方法依赖于模拟学习、模型预测控制(MPC)和深神经网络中使用的一种解释技术。我们利用模拟学习作为进行反强化学习的手段,以便为视觉导航挑战创造大致成本功能生成器。由此产生的成本功能,即成本映射,与MPC一起用于实时控制,在新环境中优于其他最先进的成本映射生成器。拟议程序允许简单培训和可靠地采集外表数据。我们运用我们的方法在多个真实和模拟环境中进行基于愿景的自主驱动任务,并展示其通用性。