Differentiable architecture search (DARTS) has been a mainstream direction in automatic machine learning. Since the discovery that original DARTS will inevitably converge to poor architectures, recent works alleviate this by either designing rule-based architecture selection techniques or incorporating complex regularization techniques, abandoning the simplicity of the original DARTS that selects architectures based on the largest parametric value, namely $\alpha$. Moreover, we find that all the previous attempts only rely on classification labels, hence learning only single modal information and limiting the representation power of the shared network. To this end, we propose to additionally inject semantic information by formulating a patch recovery approach. Specifically, we exploit the recent trending masked image modeling and do not abandon the guidance from the downstream tasks during the search phase. Our method surpasses all previous DARTS variants and achieves state-of-the-art results on CIFAR-10, CIFAR-100, and ImageNet without complex manual-designed strategies.
翻译:差异式建筑搜索(DARTS)一直是自动机器学习的主流方向。 由于发现最初的DARTS将不可避免地汇集到落后的建筑中,最近的工作通过设计基于规则的建筑选择技术或采用复杂的正规化技术来缓解这一点,放弃最初的DARTS根据最大的参数值(即$\alpha$)选择建筑的简单性。此外,我们发现所有先前的尝试都只依靠分类标签,因此只学习单一模式信息并限制共享网络的演示力。 为此,我们提议通过制定补丁恢复方法来补充语义信息。 具体地说,我们利用最近的趋势化遮蔽图像建模方法,而不是放弃搜索阶段下游任务的指导。 我们的方法超过了以前所有的DARTS变异技术,并在CIFAR-10、CIFAR-100和图像网络上实现了最新的艺术成果,而没有复杂的手工设计战略。