As humans, we can remember certain visuals in great detail, and sometimes even after viewing them once. What is even more interesting is that humans tend to remember and forget the same things, suggesting that there might be some general internal characteristics of an image to encode and discard similar types of information. Research suggests that some pictures tend to be memorized more than others. The ability of an image to be remembered by different viewers is one of its intrinsic properties. In visualization and photography, creating memorable images is a difficult task. Hence, to solve the problem, various techniques predict visual memorability and manipulate images' memorability. We present a comprehensive literature survey to assess the deep learning techniques used to predict and modify memorability. In particular, we analyze the use of Convolutional Neural Networks, Recurrent Neural Networks, and Generative Adversarial Networks for image memorability prediction and modification.


翻译:作为人类,我们可以非常详细地记住某些视觉,有时甚至是在看了一次之后。更有趣的是,人类往往会记住和忘记同样的事物,这表明一个图像可能有一些一般的内部特征来编码和丢弃相似类型的信息。研究表明,有些图片比其他图片更具有记忆力。不同观众记忆的图像能力是其内在特性之一。在视觉化和摄影中,创造难忘的图像是一项困难的任务。因此,为了解决问题,各种技术预测视觉记忆力并操纵图像的记忆力。我们提出了一个全面的文献调查,以评估用于预测和修改记忆力的深层学习技术。特别是,我们分析了使用进化神经网络、常规神经网络和Generational Aversarial 网络来预测和修改图像记忆力。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
167+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
A Comprehensive Survey on Graph Neural Networks
Arxiv
13+阅读 · 2019年3月10日
VIP会员
相关VIP内容
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员