Neural Architecture Search has attracted increasing attention in recent years. Among them, differential NAS approaches such as DARTS, have gained popularity for the search efficiency. However, they still suffer from three main issues, that are, the weak stability due to the performance collapse, the poor generalization ability of the searched architectures, and the inferior robustness to different kinds of proxies. To solve the stability and generalization problems, a simple-but-effective regularization method, termed as Beta-Decay, is proposed to regularize the DARTS-based NAS searching process (i.e., $\beta$-DARTS). Specifically, Beta-Decay regularization can impose constraints to keep the value and variance of activated architecture parameters from being too large, thereby ensuring fair competition among architecture parameters and making the supernet less sensitive to the impact of input on the operation set. In-depth theoretical analyses on how it works and why it works are provided. Comprehensive experiments validate that Beta-Decay regularization can help to stabilize the searching process and makes the searched network more transferable across different datasets. To address the robustness problem, we first benchmark different NAS methods under a wide range of proxy data, proxy channels, proxy layers and proxy epochs, since the robustness of NAS under different kinds of proxies has not been explored before. We then conclude some interesting findings and find that $\beta$-DARTS always achieves the best result among all compared NAS methods under almost all proxies. We further introduce the novel flooding regularization to the weight optimization of $\beta$-DARTS (i.e., Bi-level regularization), and experimentally and theoretically verify its effectiveness for improving the proxy robustness of differentiable NAS.


翻译:近些年来,神经架构搜索吸引了越来越多的关注。 其中,不同的NASS方法,如DARTS,在搜索效率方面越来越受欢迎。然而,它们仍然受到三大问题的影响,即:由于性能崩溃导致的稳定性不高,搜索架构的概括能力差,以及不同种类的替代物的稳健性差。为了解决稳定性和一般化问题,一种简单但有效的正规化方法,称为Beta-Decay,旨在规范基于DARTS的NAS搜索进程(即$\beeta$-DARTS)。具体地说,Beta-Decay正规化可以施加限制,使激活架构参数的价值和差异不会太大,从而确保结构参数之间的公平竞争,并使超级网络对各种投入对运行集的影响不那么敏感。深入的理论分析表明,Beta-Decay正规化可以帮助稳定搜索进程,并使搜索网络在不同的数据集之间更加可转让。为了解决稳健性的问题,我们总是将所有代理结构的正值规则进行对比,因此,我们首先根据不同的NAS的代理数据层次来,我们根据不同层次对稳妥的正确的正确性分析方法,然后测量了。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
60+阅读 · 2020年3月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
13+阅读 · 2019年11月14日
Arxiv
11+阅读 · 2019年4月15日
Arxiv
12+阅读 · 2018年9月5日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员