We introduce KeypointDeformer, a novel unsupervised method for shape control through automatically discovered 3D keypoints. We cast this as the problem of aligning a source 3D object to a target 3D object from the same object category. Our method analyzes the difference between the shapes of the two objects by comparing their latent representations. This latent representation is in the form of 3D keypoints that are learned in an unsupervised way. The difference between the 3D keypoints of the source and the target objects then informs the shape deformation algorithm that deforms the source object into the target object. The whole model is learned end-to-end and simultaneously discovers 3D keypoints while learning to use them for deforming object shapes. Our approach produces intuitive and semantically consistent control of shape deformations. Moreover, our discovered 3D keypoints are consistent across object category instances despite large shape variations. As our method is unsupervised, it can be readily deployed to new object categories without requiring annotations for 3D keypoints and deformations.


翻译:我们引入了 KeypointDeext, 这是一种通过自动发现 3D 关键点来控制形状的新颖且不受监督的方法。 我们将此作为将源 3D 对象与同一对象类别的目标 3D 对象对齐的问题。 我们的方法通过比较这两个对象的潜在表达形式来分析这两个对象的形状之间的差异。 这种潜在表示形式为以不受监督的方式学习的 3D 关键点。 源的 3D 关键点和目标对象之间的差别, 然后将形状变形算法告知目标对象。 整个模型学习了源 3D 对象的端到端, 同时发现 3D 关键点, 同时学习了它们用于变形对象形状。 我们的方法产生了对形状变形的直观和语义一致的控制。 此外, 我们发现的 3D 关键点在对象类别之间是一致的, 尽管形状变化很大。 由于我们的方法不受到监督, 它很容易被部署到新的对象类别, 不需要 3D 关键点和变形的说明 。

0
下载
关闭预览

相关内容

3D是英文“Three Dimensions”的简称,中文是指三维、三个维度、三个坐标,即有长、有宽、有高,换句话说,就是立体的,是相对于只有长和宽的平面(2D)而言。
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【论文】结构GANs,Structured GANs,
专知会员服务
14+阅读 · 2020年1月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
CVPR2019 | Stereo R-CNN 3D 目标检测
极市平台
27+阅读 · 2019年3月10日
【泡泡一分钟】基于3D激光雷达地图的立体相机定位
泡泡机器人SLAM
4+阅读 · 2019年1月14日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
CVPR2019 | Stereo R-CNN 3D 目标检测
极市平台
27+阅读 · 2019年3月10日
【泡泡一分钟】基于3D激光雷达地图的立体相机定位
泡泡机器人SLAM
4+阅读 · 2019年1月14日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Top
微信扫码咨询专知VIP会员