General point clouds have been increasingly investigated for different tasks, and recently Transformer-based networks are proposed for point cloud analysis. However, there are barely related works for medical point clouds, which are important for disease detection and treatment. In this work, we propose an attention-based model specifically for medical point clouds, namely 3D medical point Transformer (3DMedPT), to examine the complex biological structures. By augmenting contextual information and summarizing local responses at query, our attention module can capture both local context and global content feature interactions. However, the insufficient training samples of medical data may lead to poor feature learning, so we apply position embeddings to learn accurate local geometry and Multi-Graph Reasoning (MGR) to examine global knowledge propagation over channel graphs to enrich feature representations. Experiments conducted on IntrA dataset proves the superiority of 3DMedPT, where we achieve the best classification and segmentation results. Furthermore, the promising generalization ability of our method is validated on general 3D point cloud benchmarks: ModelNet40 and ShapeNetPart. Code will be released soon.


翻译:对一般云层进行了越来越多的不同任务调查,最近提出了基于变换器的网络,以进行点云分析;然而,医疗点云几乎没有相关的工作,而这些工作对于疾病检测和治疗十分重要;在这项工作中,我们建议了一种专门针对医疗点云的注意模式,即3D医疗点变换器(3DDMedPT),以检查复杂的生物结构;通过增加背景资料和在查询时总结当地的反应,我们的注意模块可以同时反映当地背景和全球内容特征的相互作用;然而,医疗数据的培训样本不足可能导致特征学习不良,因此,我们应用嵌入位置来学习准确的当地几何学和多格拉夫理学(MGR),以研究通过频道图传播全球知识,以丰富特征描述。在IntrA数据集上进行的实验证明了3DMedPT的优越性,我们在那里取得了最佳分类和分解结果。此外,我们方法有希望的普及能力将在一般3D点云点基准:模型Net40和ShapeNetPart上得到验证。代码将很快发布。

0
下载
关闭预览

相关内容

根据激光测量原理得到的点云,包括三维坐标(XYZ)和激光反射强度(Intensity)。 根据摄影测量原理得到的点云,包括三维坐标(XYZ)和颜色信息(RGB)。 结合激光测量和摄影测量原理得到点云,包括三维坐标(XYZ)、激光反射强度(Intensity)和颜色信息(RGB)。 在获取物体表面每个采样点的空间坐标后,得到的是一个点的集合,称之为“点云”(Point Cloud)
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
33+阅读 · 2020年4月15日
吴恩达新书《Machine Learning Yearning》完整中文版
专知会员服务
147+阅读 · 2019年10月27日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
视频理解 S3D,I3D-GCN,SlowFastNet, LFB
极市平台
7+阅读 · 2019年1月31日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
15+阅读 · 2022年1月24日
Arxiv
4+阅读 · 2020年10月18日
Arxiv
15+阅读 · 2020年2月5日
Deep Learning for 3D Point Clouds: A Survey
Arxiv
3+阅读 · 2019年12月27日
Arxiv
12+阅读 · 2019年1月24日
Arxiv
10+阅读 · 2018年2月4日
VIP会员
相关论文
Arxiv
15+阅读 · 2022年1月24日
Arxiv
4+阅读 · 2020年10月18日
Arxiv
15+阅读 · 2020年2月5日
Deep Learning for 3D Point Clouds: A Survey
Arxiv
3+阅读 · 2019年12月27日
Arxiv
12+阅读 · 2019年1月24日
Arxiv
10+阅读 · 2018年2月4日
Top
微信扫码咨询专知VIP会员