We consider the Virtual Element discretization of the Navier-Stokes equations coupled with the heat equation where the viscosity depends on the temperature. We present the Virtual Element discretization of the coupled problem, show its well-posedness, and prove optimal error estimates. Numerical experiments which confirm the theoretical error bounds are also presented.
翻译:我们认为纳维埃-斯托克斯方程式的虚拟元素分解,加上粘度取决于温度的热方程式。我们展示了同时存在问题的虚拟元素分解,显示了其稳妥的状态,并证明了最佳误差估计。 也展示了证实理论误差界限的数字实验。