We construct solvers for an isogeometric multi-patch discretization, where the patches are coupled via a discontinuous Galerkin approach, which allows the consideration of discretizations that do not match on the interfaces. We solve the resulting linear system using a Dual-Primal IsogEometric Tearing and Interconnecting (IETI-DP) method. We are interested in solving the arising patch-local problems using iterative solvers since this allows the reduction of the memory footprint. We solve the patch-local problems approximately using the Fast Diagonalization method, which is known to be robust in the grid size and the spline degree. To obtain the tensor structure needed for the application of the Fast Diagonalization method, we introduce an orthogonal splitting of the local function spaces. We present a convergence theory that confirms that the condition number of the preconditioned system only grows poly-logarithmically with the grid size. The numerical experiments confirm this finding. Moreover, they show that the convergence of the overall solver only mildly depends on the spline degree. We observe a mild reduction of the computational times and a significant reduction of the memory requirements in comparison to standard IETI-DP solvers using sparse direct solvers for the local subproblems. Furthermore, the experiments indicate good scaling behavior on distributed memory machines.
翻译:我们为异形测量多相位离散设计构建解析器, 使补丁通过不连续的 Galerkin 方法结合, 从而可以考虑与界面不匹配的离散设计。 我们使用双极异相位分解撕裂和互连( EITI- DP) 方法解决由此形成的线性系统。 我们有兴趣用迭代解码器解决正在产生的补丁问题, 因为这样可以减少记忆足迹。 我们用快速对角化方法解决补丁点问题, 快速对角化方法在网格大小和样条度上都很强大。 为了获得快速对角化方法应用所需的分解结构, 我们采用本地功能空间的双极分解和互连法( ITI- DP ) 方法来解决由此产生的线性线性系统。 我们提出一种趋同理论, 证明先决条件系统的条件数只会随着网格大小增长多对数。 数字实验证实了这个结果。 此外, 它们表明, 总体解码的趋近点仅取决于浮度度度。 我们观察了计算器的微缩缩缩缩缩缩缩缩缩缩缩度结构结构结构,, 并用计算器将计算器的计算时, 和微缩微缩缩缩缩缩缩缩缩缩缩缩缩缩缩缩缩缩缩缩缩缩缩缩缩缩缩缩缩缩缩缩缩缩缩缩缩缩缩缩缩缩的缩缩缩缩缩缩缩缩缩缩缩缩缩缩的缩缩缩缩缩缩缩缩缩缩缩缩缩缩缩缩缩缩缩缩缩缩缩缩缩缩缩缩缩缩缩缩缩缩缩缩缩缩缩缩缩缩缩缩缩缩缩的I 。