The deep learning (DL) technology has been widely used for image classification in many scenarios, e.g., face recognition and suspect tracking. Such a highly commercialized application has given rise to intellectual property protection of its DL model. To combat that, the mainstream method is to embed a unique watermark into the target model during the training process. However, existing efforts focus on detecting copyright infringement for a given model, while rarely consider the problem of traitors tracking. Moreover, the watermark embedding process can incur privacy issues for the training data in a distributed manner. In this paper, we propose SECUREMARK-DL, a novel fingerprinting framework to address the above two problems in a distributed learning environment. It embeds a unique fingerprint into the target model for each customer, which can be extracted and verified from any suspicious model once a dispute arises. In addition, it adopts a new privacy partitioning technique in the training process to protect the training data privacy. Extensive experiments demonstrate the robustness of SECUREMARK-DL against various attacks, and its high classification accuracy (> 95%) even if a long-bit (304-bit) fingerprint is embedded into an input image.


翻译:深度学习(DL)技术在许多情景中被广泛用于图像分类,例如面部识别和可疑跟踪。这种高度商业化的应用导致其DL模型的知识产权保护。要解决这一问题,主流方法是在培训过程中将独特的水印嵌入目标模型,然而,现有的工作重点是发现特定模型的版权侵犯,而很少考虑叛徒追踪问题。此外,水标记嵌入过程可能会以分布方式为培训数据带来隐私问题。在本文件中,我们提议SECURREMARK-DL,这是一个解决分布式学习环境中上述两个问题的新型指纹框架。它把独特的指纹嵌入每个客户的目标模型,一旦出现争议,可从任何可疑模型中提取和核实。此外,它还在培训过程中采用新的隐私隔离技术,以保护培训数据的隐私。广泛的实验表明SECURREMARK-DL在各种攻击中具有很强的可靠性,而且高分类精确度( > 95%),即使长位(304比位)指纹嵌入了输入图像。

0
下载
关闭预览

相关内容

图像分类,顾名思义,是一个输入图像,输出对该图像内容分类的描述的问题。它是计算机视觉的核心,实际应用广泛。
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
A Survey on Data Augmentation for Text Classification
Interpretable CNNs for Object Classification
Arxiv
20+阅读 · 2020年3月12日
Arxiv
45+阅读 · 2019年12月20日
Arxiv
15+阅读 · 2019年6月25日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员