项目名称: 有限域上指数和与量子码的研究
项目编号: No.11471008
项目类型: 面上项目
立项/批准年度: 2015
项目学科: 数理科学和化学
项目作者: 罗金权
作者单位: 华中师范大学
项目金额: 65万元
中文摘要: 有限域上的指数和是数论和信息科学中的重要研究对象。CDMA和OFDM通信系统以及流密码中需要自相关和互相关值较小的周期序列,这相当于对应的指数和的绝对值较小。我们试图研究那些有明显表达式的指数和;从而决定相应的周期序列的相关分布,构造具有较小自相关和互相关值的周期序列族。另外,我们可以决定相应的循环码的权分布。 同时,我们尝试构造新的bent函数或者高非线性度的函数。 量子码为量子计算的实现提供了可靠的保障。量子MDS码是指达到量子Singleton界的量子码。本项目致力于构造新的量子MDS码,所用的主要工具主要为有限域上满足厄尔米特自正交条件的广义Reed Solomn码。另外,我们试图改进量子码的某些界,例如量子TVZ界。
中文关键词: 指数和;循环码;周期序列;相关函数;量子码
英文摘要: Exponential sums on finite fields are important research objects in both number theory and communication theory. In CDMA & OFDM communication systems and stream ciphers, we need sequences with low auto- and cross correlations. It is equivalent to say that the corresponding exponential sum has small absolute value. We try to investigate the exponential sums with explicit expressions. In what follows, the cross correlation distribution of the sequences can be determined. Furthermore, the weight distribution of the associated cyclic code can also be determined. In this way, we may find periodic seqeunces family with low auto- and cross correlations. Meanwhile, we try to construct bent function and/or highly nonlinear function. Quantum codes provide reliable guarantee for quantum computing. Quantum MDS codes are quantum codes attaching quantum MDS bound. This project focuses on the construction of new quantum MDS codes. Our main potential tools are generalized Reed-Solomn codes over finite fields sastifying Hermitian self orthogonal property. Moreover, we try to improve some bound on quantum codes, for example, quantum TVZ bound.
英文关键词: exponential sum;cyclic code;periodic sequence;correlation function;quantum code