The capacity to achieve out-of-distribution (OOD) generalization is a hallmark of human intelligence and yet remains out of reach for machines. This remarkable capability has been attributed to our abilities to make conceptual abstraction and analogy, and to a mechanism known as indirection, which binds two representations and uses one representation to refer to the other. Inspired by these mechanisms, we hypothesize that OOD generalization may be achieved by performing analogy-making and indirection in the functional space instead of the data space as in current methods. To realize this, we design FINE (Functional Indirection Neural Estimator), a neural framework that learns to compose functions that map data input to output on-the-fly. FINE consists of a backbone network and a trainable semantic memory of basis weight matrices. Upon seeing a new input-output data pair, FINE dynamically constructs the backbone weights by mixing the basis weights. The mixing coefficients are indirectly computed through querying a separate corresponding semantic memory using the data pair. We demonstrate empirically that FINE can strongly improve out-of-distribution generalization on IQ tasks that involve geometric transformations. In particular, we train FINE and competing models on IQ tasks using images from the MNIST, Omniglot and CIFAR100 datasets and test on tasks with unseen image classes from one or different datasets and unseen transformation rules. FINE not only achieves the best performance on all tasks but also is able to adapt to small-scale data scenarios.


翻译:实现分配外(OOD)概括化的能力是人类情报的标志,但机器仍然无法达到。这一非凡的能力归功于我们进行概念抽象和类比的能力,以及被称为间接化的机制,它将两个表示捆绑在一起,并使用一个表示来参考另一个表示。受这些机制的启发,我们假设OOOD的概括化可以通过在功能空间而不是像目前方法那样的数据空间进行类比制和间接化来实现。为了实现这一点,我们设计了FINE(Functional Indirective Nealimator),这是一个神经框架,它学会将数据输入与现场输出相匹配。FINE包括一个主网络和基础重量矩阵的可训练的语义记忆。在看到一个新的输入输出数据配对后,FINE通过混合基准重量来动态地构建骨干权重。只有通过使用数据对匹配来间接计算一个小的混合系数。我们通过实验性地显示,FINENE(FI)和GIQ(我们进行常规化)数据转换时,我们也可以用一个常规化的模型来大大改进一个数字转换。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
2+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年12月8日
Arxiv
0+阅读 · 2022年12月8日
Arxiv
14+阅读 · 2022年5月6日
Arxiv
38+阅读 · 2021年8月31日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
2+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员