A recently developed measure-theoretic framework solves a stochastic inverse problem (SIP) for models where uncertainties in model output data are predominantly due to aleatoric (i.e., irreducible) uncertainties in model inputs (i.e., parameters). The subsequent inferential target is a distribution on parameters. Another type of inverse problem is to quantify uncertainties in estimates of "true" parameter values under the assumption that such uncertainties should be reduced as more data are incorporated into the problem, i.e., the uncertainty is considered epistemic. A major contribution of this work is the formulation and solution of such a parameter identification problem (PIP) within the measure-theoretic framework developed for the SIP. The approach is novel in that it utilizes a solution to a stochastic forward problem (SFP) to update an initial density only in the parameter directions informed by the model output data. In other words, this method performs "selective regularization" only in the parameter directions not informed by data. The solution is defined by a maximal updated density (MUD) point where the updated density defines the measure-theoretic solution to the PIP. Another significant contribution of this work is the full theory of existence and uniqueness of MUD points for linear maps with Gaussian distributions. Data-constructed Quantity of Interest (QoI) maps are also presented and analyzed for solving the PIP within this measure-theoretic framework as a means of reducing uncertainties in the MUD estimate. We conclude with a demonstration of the general applicability of the method on two problems involving either spatial or temporal data for estimating uncertain model parameters.
翻译:最近开发的计量-理论框架解决了模型的不测反常问题(SIP),模型输出数据的不确定性主要归因于模型输入(即参数)的偏差性(即不可降低)不确定性。随后的推论目标是参数的分布。另一个反常问题是,在假设更多的数据被纳入问题时,这种不确定性应减少,即不确定性被视为缩略语。这项工作的主要贡献是在为SIP开发的测量-理论框架内,这种参数识别(PIP)的不确定性的制定和解决方案,而这种参数识别问题主要是由于模型输入(即参数)的偏差性(即不可降低)不确定性。随后的推论目标是在参数上分布上进行分配。另一个反向的问题是,在模型输出数据所通报的参数方向下,仅对“真”参数值估计的不确定性进行量化,即,这种不确定性被视为隐含不确定性的参数方向。这一解决方案由两个经更新的密度(MUD)点来定义,在这个模型中,更新的度值识别参数识别参数的参数确定值的参数的参数识别问题(PMUD),其中的精确度的精确度度值是用于该模型的精确度的精确度的精确度的精确度的计算方法,而该数值的精确度的精确度的精确度的精确度是该数值的精确度的精确度的计算方法。