Network pruning is a promising way to generate light but accurate models and enable their deployment on resource-limited edge devices. However, the current state-of-the-art assumes that the effective sub-network and the other superfluous parameters in the given network share the same distribution, where pruning inevitably involves a distribution truncation operation. They usually eliminate values near zero. While simple, it may not be the most appropriate method, as effective models may naturally have many small values associated with them. Removing near-zero values already embedded in model space may significantly reduce model accuracy. Another line of work has proposed to assign discrete prior over all possible sub-structures that still rely on human-crafted prior hypotheses. Worse still, existing methods use regularized point estimates, namely Hard Pruning, that can not provide error estimations and fail reliability justification for the pruned networks. In this paper, we propose a novel distribution-lossless pruning method, named DLLP, to theoretically find the pruned lottery within Bayesian treatment. Specifically, DLLP remodels the vanilla networks as discrete priors for the latent pruned model and the other redundancy. More importantly, DLLP uses Stein Variational Inference to approach the latent prior and effectively bypasses calculating KL divergence with unknown distribution. Extensive experiments based on small Cifar-10 and large-scaled ImageNet demonstrate that our method can obtain sparser networks with great generalization performance while providing quantified reliability for the pruned model.


翻译:网络修剪是产生光线但准确的模型并使其能在资源有限的边缘设备上部署的一个很有希望的方法。 但是,目前的最新技术假设是,在给定网络中有效的子网络和其他多余参数的分布相同, 运行不可避免地涉及分布中断操作。 它们通常消除接近于零的值。 虽然简单, 它可能不是最合适的方法, 因为有效的模型自然可能有与其相关的许多小值。 去除已经嵌入模型空间的近零值可能会大大降低模型的准确性。 另一行工作提议, 在所有可能仍然依赖人造的前假设的子结构上, 先分配离散的子网络和其他多余的参数。 更糟糕的是, 现有的方法使用常规点估计( 硬普鲁宁 ), 无法提供错误估计, 并且无法为已修整的网络提供可靠性解释。 在本文中, 我们提出了一个新的分配无损失的理算方法, 名为 DLLLP, 以理论上在 Bayesian 的处理中找到纯的彩票。 具体地, DLLLP 将V 网络改成离散的预模型,, 提供以隐藏的预置的预置的模型, 并展示前置的模型, 和前置的模型, 和前置的模型, 以前置的模型, 和前置的模型, 以前置的模型和前置为基础, 以前置的基的变的变的变的变的变的变式的模型, 以前的模型, 以前的模型和前置的变式的模型和前置的变式的变式的变法, 基础, 基础的变式的变。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
19+阅读 · 2020年7月13日
Arxiv
110+阅读 · 2020年2月5日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员