We introduce Mixture-based Feature Space Learning (MixtFSL) for obtaining a rich and robust feature representation in the context of few-shot image classification. Previous works have proposed to model each base class either with a single point or with a mixture model by relying on offline clustering algorithms. In contrast, we propose to model base classes with mixture models by simultaneously training the feature extractor and learning the mixture model parameters in an online manner. This results in a richer and more discriminative feature space which can be employed to classify novel examples from very few samples. Two main stages are proposed to train the MixtFSL model. First, the multimodal mixtures for each base class and the feature extractor parameters are learned using a combination of two loss functions. Second, the resulting network and mixture models are progressively refined through a leader-follower learning procedure, which uses the current estimate as a "target" network. This target network is used to make a consistent assignment of instances to mixture components, which increases performance and stabilizes training. The effectiveness of our end-to-end feature space learning approach is demonstrated with extensive experiments on four standard datasets and four backbones. Notably, we demonstrate that when we combine our robust representation with recent alignment-based approaches, we achieve new state-of-the-art results in the inductive setting, with an absolute accuracy for 5-shot classification of 82.45 on miniImageNet, 88.20 with tieredImageNet, and 60.70 in FC100 using the ResNet-12 backbone.


翻译:我们引入了基于Mixture的基于MixtFSL (MixtFSL) 的磁性60 空间学习(MixtFSL), 以在微小图像分类中获得丰富和强健的特征代表。 先前的工程建议通过依赖离线群集算算法, 以单一点或混合模型来模拟每个基类。 相反, 我们建议同时培训特征提取器和在线学习混合模型参数, 以此模拟混合模型的基类。 这导致一个更丰富和更具歧视性的特征空间, 可用于对少数样本的新例子进行分类。 提议了两个主要阶段来培训 MixtFSL 模型。 首先, 利用两个损失函数组合学习每个基类和特征提取参数参数。 其次, 由此形成的网络和混合模型通过一个执行者学习程序, 将当前估算作为“ 目标” 网络模型的网络。 这个目标网络被用来对混合混合混合物组件20, 提高性能和稳定培训。 我们的终端空间学习方法的有效性体现在在四个标准数据集和Flim 5 的精确度方法上, 显示我们与最新的精确度的精确度在5 的分类中, 当我们实现我们与最新的精确度上, 当我们实现了我们时, 和最强的精确的精确的精确性在5 时, 和最强的分类时, 我们时, 和最精确性在5 和最强的精确性地的精确性地标时,我们实现我们实现了我们实现了。

0
下载
关闭预览

相关内容

【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
7+阅读 · 2020年3月1日
Arxiv
6+阅读 · 2018年12月10日
Arxiv
7+阅读 · 2018年12月5日
Arxiv
3+阅读 · 2017年10月1日
VIP会员
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
相关论文
Arxiv
7+阅读 · 2020年3月1日
Arxiv
6+阅读 · 2018年12月10日
Arxiv
7+阅读 · 2018年12月5日
Arxiv
3+阅读 · 2017年10月1日
Top
微信扫码咨询专知VIP会员