Object detectors trained on large-scale RGB datasets are being extensively employed in real-world applications. However, these RGB-trained models suffer a performance drop under adverse illumination and lighting conditions. Infrared (IR) cameras are robust under such conditions and can be helpful in real-world applications. Though thermal cameras are widely used for military applications and increasingly for commercial applications, there is a lack of robust algorithms to robustly exploit the thermal imagery due to the limited availability of labeled thermal data. In this work, we aim to enhance the object detection performance in the thermal domain by leveraging the labeled visible domain data in an Unsupervised Domain Adaptation (UDA) setting. We propose an algorithm agnostic meta-learning framework to improve existing UDA methods instead of proposing a new UDA strategy. We achieve this by meta-learning the initial condition of the detector, which facilitates the adaptation process with fine updates without overfitting or getting stuck at local optima. However, meta-learning the initial condition for the detection scenario is computationally heavy due to long and intractable computation graphs. Therefore, we propose an online meta-learning paradigm which performs online updates resulting in a short and tractable computation graph. To this end, we demonstrate the superiority of our method over many baselines in the UDA setting, producing a state-of-the-art thermal detector for the KAIST and DSIAC datasets.


翻译:在大规模RGB数据集方面受过培训的大型 RGB 物体探测器正在被广泛应用于现实世界应用中。然而,这些RGB 培训过的模型在不利的照明和照明条件下出现性能下降。红外(IR) 相机在这种条件下是稳健的,在现实世界应用中可能有所帮助。虽然热照相机广泛用于军事用途,并越来越多地用于商业应用,但由于标签热数据有限,因此缺乏强有力的算法来强有力地利用热图像。在这项工作中,我们的目标是利用在无人监督的Domain适应(UDA)设置中贴上标签的可见域域数据,提高热域域的物体探测性能。我们提出一个算法的不可知的元化元学习框架,以改进现有的UDA方法,而不是提出新的UDA战略。我们通过元化学习探测器的初始条件来实现这一目标,这种技术有助于适应进程,同时不过度调整或卡在当地选择中卡住的热数据。但是,在长期和难解的计算图中,探测方案最初的条件是沉重的。因此,我们提议一个在线元化的元学习模式,用来在对我们的KAAS 进行在线的升级,从而在水平上进行我们的DAAGRA 。

0
下载
关闭预览

相关内容

专知会员服务
31+阅读 · 2021年6月12日
AlphaZero原理与启示
专知会员服务
32+阅读 · 2020年8月23日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【Google AI】开源NoisyStudent:自监督图像分类
专知会员服务
54+阅读 · 2020年2月18日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
VIP会员
相关VIP内容
专知会员服务
31+阅读 · 2021年6月12日
AlphaZero原理与启示
专知会员服务
32+阅读 · 2020年8月23日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【Google AI】开源NoisyStudent:自监督图像分类
专知会员服务
54+阅读 · 2020年2月18日
Top
微信扫码咨询专知VIP会员