Linear Mixed-Effects (LME) models are a fundamental tool for modeling correlated data, including cohort studies, longitudinal data analysis, and meta-analysis. Design and analysis of variable selection methods for LMEs is more difficult than for linear regression because LME models are nonlinear. In this work we propose a relaxation strategy and optimization methods that enable a wide range of variable selection methods for LMEs using both convex and nonconvex regularizers, including $\ell_1$, Adaptive-$\ell_1$, CAD, and $\ell_0$. The computational framework only requires the proximal operator for each regularizer to be available, and the implementation is available in an open source python package pysr3, consistent with the sklearn standard. The numerical results on simulated data sets indicate that the proposed strategy improves on the state of the art for both accuracy and compute time. The variable selection techniques are also validated on a real example using a data set on bullying victimization.
翻译:线性混合效应模型(LME)是模拟相关数据的基本工具,包括组群研究、纵向数据分析和元分析。 LME 变量选择方法的设计和分析比线性回归要困难得多,因为 LME 模型是非线性模型。 在这项工作中,我们提出了一个放松战略和优化方法,使LME 能够使用包括$\ ell_ 1美元、适应性-$\ $_ 美元、CAD 和$\ ell_ 0$在内的非线性规范器对各种变量选择方法进行建模。计算框架只要求为每个正统化器提供准十进制操作器,并且根据斯klearn 标准,在开放源的 python 软件包 pysr3 中提供实施。模拟数据集的数字结果显示,拟议的战略在准确性和计算时间方面都改善了艺术状态。变量选择技术也用一套关于欺凌受害的数据集在实际例子上得到验证。