Objective: To compare different risk-based methods for optimal prediction of treatment effects. Methods: We simulated RCT data using diverse assumptions for the average treatment effect, a baseline prognostic index of risk (PI), the shape of its interaction with treatment (none, linear, quadratic or non-monotonic), and the magnitude of treatment-related harms (none or constant independent of the PI). We predicted absolute benefit using: models with a constant relative treatment effect; stratification in quarters of the PI; models including a linear interaction of treatment with the PI; models including an interaction of treatment with a restricted cubic spline (RCS) transformation of the PI; an adaptive approach using Akaike's Information Criterion. We evaluated predictive performance using root mean squared error and measures of discrimination and calibration for benefit. Results: The linear-interaction model displayed optimal or close-to-optimal performance across many simulation scenarios with moderate sample size (N=4,250 patients; ~ 785 events). The RCS-model was optimal for strong non-linear deviations from a constant treatment effect, particularly when sample size was larger (N=17,000). The adaptive approach also required larger sample sizes. These findings were illustrated in the GUSTO-I trial. Conclusion: An interaction between baseline risk and treatment assignment should be considered to improve treatment effect predictions.


翻译:方法:我们模拟了RCT数据,使用了对平均治疗效果的不同假设、风险基准预测指数(PI)、其与治疗的相互作用(无、线性、二次或非双向),以及与治疗有关的伤害的程度(没有或经常独立于PI)。 我们预测了绝对效益,使用的是:具有持续相对治疗效果的模型;PI的分层;模型包括与PI的治疗的线性互动;模型包括治疗与PI的有限立方螺旋(RCS)转化的相互作用;利用Akaike的信息标准进行适应性方法;我们利用根平均值差、线性、二次或非单向偏差以及歧视和校准的衡量方法评估了预测性能。结果:线性互动模型展示了最佳或近于最佳的性性效果,在样本规模中等的多个模拟假设情景(N=4,250名病人;~785次事件)。RCS模型最适合从限制的立方螺旋线性螺旋线(RCS)疗法与PI的转化;使用Akaike的信息标准度调整方法;我们利用根平均值评价了预测性性性性性性性性性性性性工作,特别是当需要的GI的样本分析规模更大时,这些测试性评估性影响时,这种试验规模时,应当为最优化。

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
52+阅读 · 2020年9月7日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年8月23日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员