A widely used algorithm for transfer learning is fine-tuning, where a pre-trained model is fine-tuned on a target task with a small amount of labeled data. When the capacity of the pre-trained model is much larger than the size of the target data set, fine-tuning is prone to overfitting and "memorizing" the training labels. Hence, an important question is to regularize fine-tuning and ensure its robustness to noise. To address this question, we begin by analyzing the generalization properties of fine-tuning. We present a PAC-Bayes generalization bound that depends on the distance traveled in each layer during fine-tuning and the noise stability of the fine-tuned model. We empirically measure these quantities. Based on the analysis, we propose regularized self-labeling -- the interpolation between regularization and self-labeling methods, including (i) layer-wise regularization to constrain the distance traveled in each layer; (ii) self label-correction and label-reweighting to correct mislabeled data points (that the model is confident) and reweight less confident data points. We validate our approach on an extensive collection of image and text data sets using multiple pre-trained model architectures. Our approach improves baseline methods by 1.76% (on average) for seven image classification tasks and 0.75% for a few-shot classification task. When the target data set includes noisy labels, our approach outperforms baseline methods by 3.56% on average in two noisy settings.


翻译:用于传输学习的常用算法是微调, 即预先培训的模型对目标任务进行微调, 使用少量标签数据。 当预培训模型的能力大大大于目标数据集的大小时, 微调容易过度配置和“ 模化” 培训标签。 因此, 一个重要问题是规范微调, 确保其对噪音的稳健性。 为了解决这个问题, 我们首先分析微调的一般化特性。 我们展示了PAC- Bayes 常规化, 取决于微调期间每个层的距离和微调模型的噪声稳定性。 我们用实验性方法测量了这些数量。 根据分析, 我们提出了常规化的自标贴 -- -- 正规化和自我标签方法之间的内插。 因此, 一个重要问题是规范微调, 以限制每个层的距离; 为了解决这个问题, 我们首先分析微调的自标签校正和标签, 以纠正错误标记的数据点( 模型是自信的) 和再加权数据模型点。 我们用高密度的方法来校正我们用来广泛收集平均% 基准 5 的模型, 包括多级的模型 的模型, 以多种模型 格式 格式的模型, 改进了我们用来改进了我们普通的模型 的模型 的模型 的模型 的模型 和图像 的模型 的模型 改进了 我们的模型 和 的模型 的模型 和 的 的 的 的 的 的 的 的 的 的 的模型 的 的 格式 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 和 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的

0
下载
关闭预览

相关内容

【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
155+阅读 · 2020年5月26日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
已删除
将门创投
7+阅读 · 2019年10月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Jointly Improving Summarization and Sentiment Classification
黑龙江大学自然语言处理实验室
3+阅读 · 2018年6月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Arxiv
13+阅读 · 2021年7月20日
Arxiv
8+阅读 · 2020年6月15日
Arxiv
4+阅读 · 2017年12月25日
VIP会员
相关VIP内容
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
155+阅读 · 2020年5月26日
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
已删除
将门创投
7+阅读 · 2019年10月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Jointly Improving Summarization and Sentiment Classification
黑龙江大学自然语言处理实验室
3+阅读 · 2018年6月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Top
微信扫码咨询专知VIP会员