We present a simple self-training method that achieves 87.4% top-1 accuracy on ImageNet, which is 1.0% better than the state-of-the-art model that requires 3.5B weakly labeled Instagram images. On robustness test sets, it improves ImageNet-A top-1 accuracy from 16.6% to 74.2%, reduces ImageNet-C mean corruption error from 45.7 to 31.2, and reduces ImageNet-P mean flip rate from 27.8 to 16.1. To achieve this result, we first train an EfficientNet model on labeled ImageNet images and use it as a teacher to generate pseudo labels on 300M unlabeled images. We then train a larger EfficientNet as a student model on the combination of labeled and pseudo labeled images. We iterate this process by putting back the student as the teacher. During the generation of the pseudo labels, the teacher is not noised so that the pseudo labels are as good as possible. But during the learning of the student, we inject noise such as data augmentation, dropout, stochastic depth to the student so that the noised student is forced to learn harder from the pseudo labels.


翻译:我们展示了一个简单的自我培训方法,在图像网上实现了87.4%的顶级-1精确度,比最先进的模型高1.0%,该模型需要3.5B贴有微弱标签的Instagram图像。在稳健度测试组中,它将图像网A顶级-1的精确度从16.6%提高到74.2%,将图像网-C的腐败误差从45.7%降至31.2%,并将图像网-P的平均翻转率从27.8%降至16.1%。为了实现这一结果,我们首先在标签图像网图像上培训了一个高效的网络模型,并将其作为教师在300M无标签的图像上制作假标签。然后,我们将一个更大的高效网络作为学生模型,在标签和假标签图像的组合上,我们把学生放回去,从而将这一过程推向了方向。在假标签的生成过程中,教师没有被切除,因此假标签尽可能好。但是在学生学习时,我们先给学生注入了诸如数据增强、退出、深度等的噪音,让学生更难从假标签中学习。

15
下载
关闭预览

相关内容

【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
【Google】监督对比学习,Supervised Contrastive Learning
专知会员服务
75+阅读 · 2020年4月24日
【Google AI】开源NoisyStudent:自监督图像分类
专知会员服务
55+阅读 · 2020年2月18日
已删除
架构文摘
3+阅读 · 2019年4月17日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【CNN】一文读懂卷积神经网络CNN
产业智能官
18+阅读 · 2018年1月2日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Arxiv
8+阅读 · 2018年11月21日
Video-to-Video Synthesis
Arxiv
9+阅读 · 2018年8月20日
VIP会员
相关VIP内容
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
【Google】监督对比学习,Supervised Contrastive Learning
专知会员服务
75+阅读 · 2020年4月24日
【Google AI】开源NoisyStudent:自监督图像分类
专知会员服务
55+阅读 · 2020年2月18日
相关资讯
已删除
架构文摘
3+阅读 · 2019年4月17日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【CNN】一文读懂卷积神经网络CNN
产业智能官
18+阅读 · 2018年1月2日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Top
微信扫码咨询专知VIP会员