Few-shot classification aims to recognize unseen classes when presented with only a small number of samples. We consider the problem of multi-domain few-shot image classification, where unseen classes and examples come from diverse data sources. This problem has seen growing interest and has inspired the development of benchmarks such as Meta-Dataset. A key challenge in this multi-domain setting is to effectively integrate the feature representations from the diverse set of training domains. Here, we propose a Universal Representation Transformer (URT) layer, that meta-learns to leverage universal features for few-shot classification by dynamically re-weighting and composing the most appropriate domain-specific representations. In experiments, we show that URT sets a new state-of-the-art result on Meta-Dataset. Specifically, it achieves top-performance on the highest number of data sources compared to competing methods. We analyze variants of URT and present a visualization of the attention score heatmaps that sheds light on how the model performs cross-domain generalization. Our code is available at https://github.com/liulu112601/URT.

6
下载
关闭预览

相关内容

小样本学习(Few-Shot Learning,以下简称 FSL )用于解决当可用的数据量比较少时,如何提升神经网络的性能。在 FSL 中,经常用到的一类方法被称为 Meta-learning。和普通的神经网络的训练方法一样,Meta-learning 也包含训练过程和测试过程,但是它的训练过程被称作 Meta-training 和 Meta-testing。

Few-shot image classification aims to classify unseen classes with limited labeled samples. Recent works benefit from the meta-learning process with episodic tasks and can fast adapt to class from training to testing. Due to the limited number of samples for each task, the initial embedding network for meta learning becomes an essential component and can largely affects the performance in practice. To this end, many pre-trained methods have been proposed, and most of them are trained in supervised way with limited transfer ability for unseen classes. In this paper, we proposed to train a more generalized embedding network with self-supervised learning (SSL) which can provide slow and robust representation for downstream tasks by learning from the data itself. We evaluate our work by extensive comparisons with previous baseline methods on two few-shot classification datasets ({\em i.e.,} MiniImageNet and CUB). Based on the evaluation results, the proposed method achieves significantly better performance, i.e., improve 1-shot and 5-shot tasks by nearly \textbf{3\%} and \textbf{4\%} on MiniImageNet, by nearly \textbf{9\%} and \textbf{3\%} on CUB. Moreover, the proposed method can gain the improvement of (\textbf{15\%}, \textbf{13\%}) on MiniImageNet and (\textbf{15\%}, \textbf{8\%}) on CUB by pretraining using more unlabeled data. Our code will be available at \hyperref[https://github.com/phecy/SSL-FEW-SHOT.]{https://github.com/phecy/ssl-few-shot.}

0
13
下载
预览

This paper shows that pretraining multilingual language models at scale leads to significant performance gains for a wide range of cross-lingual transfer tasks. We train a Transformer-based masked language model on one hundred languages, using more than two terabytes of filtered CommonCrawl data. Our model, dubbed XLM-R, significantly outperforms multilingual BERT (mBERT) on a variety of cross-lingual benchmarks, including +13.8% average accuracy on XNLI, +12.3% average F1 score on MLQA, and +2.1% average F1 score on NER. XLM-R performs particularly well on low-resource languages, improving 11.8% in XNLI accuracy for Swahili and 9.2% for Urdu over the previous XLM model. We also present a detailed empirical evaluation of the key factors that are required to achieve these gains, including the trade-offs between (1) positive transfer and capacity dilution and (2) the performance of high and low resource languages at scale. Finally, we show, for the first time, the possibility of multilingual modeling without sacrificing per-language performance; XLM-Ris very competitive with strong monolingual models on the GLUE and XNLI benchmarks. We will make XLM-R code, data, and models publicly available.

0
4
下载
预览

In this paper, we aim to improve the performance of semantic image segmentation in a semi-supervised setting in which training is effectuated with a reduced set of annotated images and additional non-annotated images. We present a method based on an ensemble of deep segmentation models. Each model is trained on a subset of the annotated data, and uses the non-annotated images to exchange information with the other models, similar to co-training. Even if each model learns on the same non-annotated images, diversity is preserved with the use of adversarial samples. Our results show that this ability to simultaneously train models, which exchange knowledge while preserving diversity, leads to state-of-the-art results on two challenging medical image datasets.

0
4
下载
预览

For many computer vision applications such as image captioning, visual question answering, and person search, learning discriminative feature representations at both image and text level is an essential yet challenging problem. Its challenges originate from the large word variance in the text domain as well as the difficulty of accurately measuring the distance between the features of the two modalities. Most prior work focuses on the latter challenge, by introducing loss functions that help the network learn better feature representations but fail to account for the complexity of the textual input. With that in mind, we introduce TIMAM: a Text-Image Modality Adversarial Matching approach that learns modality-invariant feature representations using adversarial and cross-modal matching objectives. In addition, we demonstrate that BERT, a publicly-available language model that extracts word embeddings, can successfully be applied in the text-to-image matching domain. The proposed approach achieves state-of-the-art cross-modal matching performance on four widely-used publicly-available datasets resulting in absolute improvements ranging from 2% to 5% in terms of rank-1 accuracy.

0
6
下载
预览

Text classification tends to be difficult when the data is deficient or when it is required to adapt to unseen classes. In such challenging scenarios, recent studies have often used meta-learning to simulate the few-shot task, thus negating explicit common linguistic features across tasks. Deep language representations have proven to be very effective forms of unsupervised pretraining, yielding contextualized features that capture linguistic properties and benefit downstream natural language understanding tasks. However, the effect of pretrained language representation for few-shot learning on text classification tasks is still not well understood. In this study, we design a few-shot learning model with pretrained language representations and report the empirical results. We show that our approach is not only simple but also produces state-of-the-art performance on a well-studied sentiment classification dataset. It can thus be further suggested that pretraining could be a promising solution for few shot learning of many other NLP tasks. The code and the dataset to replicate the experiments are made available at https://github.com/zxlzr/FewShotNLP.

0
3
下载
预览

Bidirectional Encoder Representations from Transformers (BERT) represents the latest incarnation of pretrained language models which have recently advanced a wide range of natural language processing tasks. In this paper, we showcase how BERT can be usefully applied in text summarization and propose a general framework for both extractive and abstractive models. We introduce a novel document-level encoder based on BERT which is able to express the semantics of a document and obtain representations for its sentences. Our extractive model is built on top of this encoder by stacking several inter-sentence Transformer layers. For abstractive summarization, we propose a new fine-tuning schedule which adopts different optimizers for the encoder and the decoder as a means of alleviating the mismatch between the two (the former is pretrained while the latter is not). We also demonstrate that a two-staged fine-tuning approach can further boost the quality of the generated summaries. Experiments on three datasets show that our model achieves state-of-the-art results across the board in both extractive and abstractive settings. Our code is available at https://github.com/nlpyang/PreSumm

0
5
下载
预览

Recurrent neural networks (RNNs) sequentially process data by updating their state with each new data point, and have long been the de facto choice for sequence modeling tasks. However, their inherently sequential computation makes them slow to train. Feed-forward and convolutional architectures have recently been shown to achieve superior results on some sequence modeling tasks such as machine translation, with the added advantage that they concurrently process all inputs in the sequence, leading to easy parallelization and faster training times. Despite these successes, however, popular feed-forward sequence models like the Transformer fail to generalize in many simple tasks that recurrent models handle with ease, e.g. copying strings or even simple logical inference when the string or formula lengths exceed those observed at training time. We propose the Universal Transformer (UT), a parallel-in-time self-attentive recurrent sequence model which can be cast as a generalization of the Transformer model and which addresses these issues. UTs combine the parallelizability and global receptive field of feed-forward sequence models like the Transformer with the recurrent inductive bias of RNNs. We also add a dynamic per-position halting mechanism and find that it improves accuracy on several tasks. In contrast to the standard Transformer, under certain assumptions, UTs can be shown to be Turing-complete. Our experiments show that UTs outperform standard Transformers on a wide range of algorithmic and language understanding tasks, including the challenging LAMBADA language modeling task where UTs achieve a new state of the art, and machine translation where UTs achieve a 0.9 BLEU improvement over Transformers on the WMT14 En-De dataset.

0
4
下载
预览

Inductive transfer learning has greatly impacted computer vision, but existing approaches in NLP still require task-specific modifications and training from scratch. We propose Universal Language Model Fine-tuning (ULMFiT), an effective transfer learning method that can be applied to any task in NLP, and introduce techniques that are key for fine-tuning a language model. Our method significantly outperforms the state-of-the-art on six text classification tasks, reducing the error by 18-24% on the majority of datasets. Furthermore, with only 100 labeled examples, it matches the performance of training from scratch on 100x more data. We open-source our pretrained models and code.

0
3
下载
预览

Recently popularized graph neural networks achieve the state-of-the-art accuracy on a number of standard benchmark datasets for graph-based semi-supervised learning, improving significantly over existing approaches. These architectures alternate between a propagation layer that aggregates the hidden states of the local neighborhood and a fully-connected layer. Perhaps surprisingly, we show that a linear model, that removes all the intermediate fully-connected layers, is still able to achieve a performance comparable to the state-of-the-art models. This significantly reduces the number of parameters, which is critical for semi-supervised learning where number of labeled examples are small. This in turn allows a room for designing more innovative propagation layers. Based on this insight, we propose a novel graph neural network that removes all the intermediate fully-connected layers, and replaces the propagation layers with attention mechanisms that respect the structure of the graph. The attention mechanism allows us to learn a dynamic and adaptive local summary of the neighborhood to achieve more accurate predictions. In a number of experiments on benchmark citation networks datasets, we demonstrate that our approach outperforms competing methods. By examining the attention weights among neighbors, we show that our model provides some interesting insights on how neighbors influence each other.

0
3
下载
预览

Sentence representation models trained only on language could potentially suffer from the grounding problem. Recent work has shown promising results in improving the qualities of sentence representations by jointly training them with associated image features. However, the grounding capability is limited due to distant connection between input sentences and image features by the design of the architecture. In order to further close the gap, we propose applying self-attention mechanism to the sentence encoder to deepen the grounding effect. Our results on transfer tasks show that self-attentive encoders are better for visual grounding, as they exploit specific words with strong visual associations.

0
8
下载
预览
小贴士
相关论文
Self-Supervised Learning For Few-Shot Image Classification
Da Chen,Yuefeng Chen,Yuhong Li,Feng Mao,Yuan He,Hui Xue
13+阅读 · 2019年11月14日
Alexis Conneau,Kartikay Khandelwal,Naman Goyal,Vishrav Chaudhary,Guillaume Wenzek,Francisco Guzmán,Edouard Grave,Myle Ott,Luke Zettlemoyer,Veselin Stoyanov
4+阅读 · 2019年11月5日
Deep Co-Training for Semi-Supervised Image Segmentation
Jizong Peng,Guillermo Estrada,Marco Pedersoli,Christian Desrosiers
4+阅读 · 2019年10月30日
Adversarial Representation Learning for Text-to-Image Matching
Nikolaos Sarafianos,Xiang Xu,Ioannis A. Kakadiaris
6+阅读 · 2019年8月28日
Ningyu Zhang,Zhanlin Sun,Shumin Deng,Jiaoyan Chen,Huajun Chen
3+阅读 · 2019年8月22日
Yang Liu,Mirella Lapata
5+阅读 · 2019年8月22日
Universal Transformers
Mostafa Dehghani,Stephan Gouws,Oriol Vinyals,Jakob Uszkoreit,Łukasz Kaiser
4+阅读 · 2019年3月5日
Jeremy Howard,Sebastian Ruder
3+阅读 · 2018年5月17日
Kiran K. Thekumparampil,Chong Wang,Sewoong Oh,Li-Jia Li
3+阅读 · 2018年3月10日
Kang Min Yoo,Youhyun Shin,Sang-goo Lee
8+阅读 · 2017年12月2日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
13+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
8+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
22+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
32+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
9+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
24+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
计算机视觉的不同任务
专知
4+阅读 · 2018年8月27日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
6+阅读 · 2018年2月7日
Top
微信扫码咨询专知VIP会员