Few-shot classification aims to recognize unseen classes when presented with only a small number of samples. We consider the problem of multi-domain few-shot image classification, where unseen classes and examples come from diverse data sources. This problem has seen growing interest and has inspired the development of benchmarks such as Meta-Dataset. A key challenge in this multi-domain setting is to effectively integrate the feature representations from the diverse set of training domains. Here, we propose a Universal Representation Transformer (URT) layer, that meta-learns to leverage universal features for few-shot classification by dynamically re-weighting and composing the most appropriate domain-specific representations. In experiments, we show that URT sets a new state-of-the-art result on Meta-Dataset. Specifically, it achieves top-performance on the highest number of data sources compared to competing methods. We analyze variants of URT and present a visualization of the attention score heatmaps that sheds light on how the model performs cross-domain generalization. Our code is available at https://github.com/liulu112601/URT.


翻译:微小的分类旨在在只提供少量样本时识别隐蔽的类别。 我们考虑了多域少发图像分类的问题, 隐蔽的类别和示例来自不同的数据源。 这个问题引起了越来越多的兴趣,并激励了诸如Meta- Dataset等基准的开发。 多域设置中的一个关键挑战是将不同培训领域的特征表达方式有效地整合在一起。 我们在这里提议了一个通用代表制变异器(URT)层, 即元偏差, 通过动态重标和组成最合适的域别表达方式, 将通用的特性用于少发分类。 在实验中, 我们显示URT在Meta- Dataset上设定了一个新的最新结果。 具体地说, 它在数据源中取得了与相竞方法相比最高程度的顶级表现。 我们分析了超大面积代表制变体的变体, 并展示了关注度分数的直观化功能, 揭示了模型是如何进行跨域概括的。 我们的代码可以在 https://github.com/liulululu11601/URT上找到。

7
下载
关闭预览

相关内容

小样本学习(Few-Shot Learning,以下简称 FSL )用于解决当可用的数据量比较少时,如何提升神经网络的性能。在 FSL 中,经常用到的一类方法被称为 Meta-learning。和普通的神经网络的训练方法一样,Meta-learning 也包含训练过程和测试过程,但是它的训练过程被称作 Meta-training 和 Meta-testing。
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Transformer文本分类代码
专知会员服务
116+阅读 · 2020年2月3日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Deep Co-Training for Semi-Supervised Image Segmentation
Arxiv
5+阅读 · 2019年8月22日
Universal Transformers
Arxiv
5+阅读 · 2019年3月5日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Top
微信扫码咨询专知VIP会员