Few-shot classification aims to recognize unseen classes when presented with only a small number of samples. We consider the problem of multi-domain few-shot image classification, where unseen classes and examples come from diverse data sources. This problem has seen growing interest and has inspired the development of benchmarks such as Meta-Dataset. A key challenge in this multi-domain setting is to effectively integrate the feature representations from the diverse set of training domains. Here, we propose a Universal Representation Transformer (URT) layer, that meta-learns to leverage universal features for few-shot classification by dynamically re-weighting and composing the most appropriate domain-specific representations. In experiments, we show that URT sets a new state-of-the-art result on Meta-Dataset. Specifically, it achieves top-performance on the highest number of data sources compared to competing methods. We analyze variants of URT and present a visualization of the attention score heatmaps that sheds light on how the model performs cross-domain generalization. Our code is available at https://github.com/liulu112601/URT.
翻译:微小的分类旨在在只提供少量样本时识别隐蔽的类别。 我们考虑了多域少发图像分类的问题, 隐蔽的类别和示例来自不同的数据源。 这个问题引起了越来越多的兴趣,并激励了诸如Meta- Dataset等基准的开发。 多域设置中的一个关键挑战是将不同培训领域的特征表达方式有效地整合在一起。 我们在这里提议了一个通用代表制变异器(URT)层, 即元偏差, 通过动态重标和组成最合适的域别表达方式, 将通用的特性用于少发分类。 在实验中, 我们显示URT在Meta- Dataset上设定了一个新的最新结果。 具体地说, 它在数据源中取得了与相竞方法相比最高程度的顶级表现。 我们分析了超大面积代表制变体的变体, 并展示了关注度分数的直观化功能, 揭示了模型是如何进行跨域概括的。 我们的代码可以在 https://github.com/liulululu11601/URT上找到。