The time-varying quadratic miniaturization (TVQM) problem, as a hotspot currently, urgently demands a more reliable and faster--solving model. To this end, a novel adaptive coefficient constructs framework is presented and realized to improve the performance of the solution model, leading to the adaptive zeroing-type neural dynamics (AZTND) model. Then the AZTND model is applied to solve the TVQM problem. The adaptive coefficients can adjust the step size of the model online so that the solution model converges faster. At the same time, the integration term develops to enhance the robustness of the model in a perturbed environment. Experiments demonstrate that the proposed model shows faster convergence and more reliable robustness than existing approaches. Finally, the AZTND model is applied in a target tracking scheme, proving the practicality of our proposed model.
翻译:时间变化的二次微型化(TVQM)问题,作为目前的热点,迫切需要一种更可靠和更快的解决模式。为此,提出并实现了一个新的适应系数构建框架,以改善解决方案模型的性能,从而形成适应性零型神经动态(AZTND)模型。然后,AZTND模型用于解决TVQM问题。适应性系数可以调整模型在网上的步数大小,以便解决方案模型更快地融合。与此同时,整合术语也发展起来,以提高模型在环绕环境中的稳健性。实验表明,拟议的模型显示比现有方法更快的趋同性和更可靠的稳健性。最后,AZTND模型应用于一个目标跟踪计划,证明了我们拟议模型的实用性。