Many contrastive and meta-learning approaches learn representations by identifying common features in multiple views. However, the formalism for these approaches generally assumes features to be shared across views to be captured coherently. We consider the problem of learning a unified representation from partial observations, where useful features may be present in only some of the views. We approach this through a probabilistic formalism enabling views to map to representations with different levels of uncertainty in different components; these views can then be integrated with one another through marginalisation over that uncertainty. Our approach, Partial Observation Experts Modelling (POEM), then enables us to meta-learn consistent representations from partial observations. We evaluate our approach on an adaptation of a comprehensive few-shot learning benchmark, Meta-Dataset, and demonstrate the benefits of POEM over other meta-learning methods at representation learning from partial observations. We further demonstrate the utility of POEM by meta-learning to represent an environment from partial views observed by an agent exploring the environment.
翻译:许多对比式和元化学习方法通过在多种观点中找出共同特征来学习表达方式。然而,这些方法的正规主义通常以不同观点的特征为特征,相互共享,以便一致地捕捉。我们考虑从部分观察中学习统一代表方式的问题,只有部分观察中可能存在一些有用的特征。我们通过一种概率化的形式主义来解决这一问题,使观点能够映射到不同层面的不同不确定性的表达方式;然后,这些观点可以通过在这种不确定性上的边缘化而相互融合。我们的方法,即部分观察专家模型(POEM),然后使我们能够从部分观察中得出相互一致的表达方式。我们评估了我们如何调整一个全面的微小学习基准(Meta-Dataset),并展示了POEM在从部分观察中学习其他元学习方法方面的好处。我们进一步证明,通过元学习,POEM通过从探索环境的代理人所观察到的部分观点来代表一种环境。我们通过元学习进一步证明PEM的实用性环境。