The well-known discrete Fourier transform (DFT) can easily be generalized to arbitrary nodes in the spatial domain. The fast procedure for this generalization is referred to as nonequispaced fast Fourier transform (NFFT). Various applications such as MRI, solution of PDEs, etc., are interested in the inverse problem, i.,e., computing Fourier coefficients from given nonequispaced data. In this paper we survey different kinds of approaches to tackle this problem. In contrast to iterative procedures, where multiple iteration steps are needed for computing a solution, we focus especially on so-called direct inversion methods. We review density compensation techniques and introduce a new scheme that leads to an exact reconstruction for trigonometric polynomials. In addition, we consider a matrix optimization approach using Frobenius norm minimization to obtain an inverse NFFT.
翻译:众所周知的离散Fourier变异(DFT)可以很容易地推广到空间域的任意节点。 这种一般化的快速程序被称为无孔径快速变异(NFFFT) 。 诸如MRI、 PDEs 解决方案等各种应用都对反向问题感兴趣, 即从给定无孔径数据中计算Fourier系数。 在本文中, 我们调查了解决这一问题的不同方法。 与迭代程序相比, 在迭代程序下, 计算解决方案需要多个迭代步骤, 我们特别侧重于所谓的直接反向方法。 我们审查密度补偿技术, 并引入新方案, 导致三维测量多面体的精确重建。 此外, 我们考虑使用Frobenius 规范优化矩阵方法, 以获得相反的 NFFT 。