Efficient computation of the optimal transport distance between two distributions serves as an algorithm subroutine that empowers various applications. This paper develops a scalable first-order optimization-based method that computes optimal transport to within $\varepsilon$ additive accuracy with runtime $\widetilde{O}( n^2/\varepsilon)$, where $n$ denotes the dimension of the probability distributions of interest. Our algorithm achieves the state-of-the-art computational guarantees among all first-order methods, while exhibiting favorable numerical performance compared to classical algorithms like Sinkhorn and Greenkhorn. Underlying our algorithm designs are two key elements: (a) converting the original problem into a bilinear minimax problem over probability distributions; (b) exploiting the extragradient idea -- in conjunction with entropy regularization and adaptive learning rates -- to accelerate convergence.
翻译:有效计算两个分布器之间最佳运输距离是一种可增强各种应用的算法子路程。 本文开发了一种可缩放的第一阶优化法, 计算出最佳运输到美元( varepsilon) 的添加精度, 运行时间为 $\ loblytilde{O} ( n ⁇ 2/\ varepsilon) 美元, 其中美元表示概率分布的维度。 我们的算法在所有第一阶方法中都实现了最先进的计算保证, 同时展示了与Sinkhorn 和 Greenkhorn 等经典算法相比有利的数字性能。 我们的算法设计背后有两个关键要素 :(a) 将原始问题转换成一个双线小型问题, 而不是概率分布;(b) 利用超梯度概念 -- 与昆虫的正规化和适应性学习率相结合 -- 加速趋同。