This paper explores analytical connections between the perturbation methodology of the Australian Bureau of Statistics (ABS) and the differential privacy (DP) framework. We consider a single static counting query function and find the analytical form of the perturbation distribution with symmetric support for the ABS perturbation methodology. We then analytically measure the DP parameters, namely the $(\varepsilon, \delta)$ pair, for the ABS perturbation methodology under this setting. The results and insights obtained about the behaviour of $(\varepsilon, \delta)$ with respect to the perturbation support and variance are used to judiciously select the variance of the perturbation distribution to give a good $\delta$ in the DP framework for a given desired $\varepsilon$ and perturbation support. Finally, we propose a simple sampling scheme to implement the perturbation probability matrix in the ABS Cellkey method. The post sampling $(\varepsilon, \delta)$ pair is numerically analysed as a function of the Cellkey size. It is shown that the best results are obtained for a larger Cellkey size, because the $(\varepsilon, \delta)$ pair post-sampling measures remain almost identical when we compare sampling and theoretical results.
翻译:本文探讨了澳大利亚统计局(ABS)摄动方法与差分隐私(DP)框架之间的分析联系。我们考虑单一静态计数查询函数,并找到了对称支持下ABS摄动方法的摄动分布的解析形式。然后,在该设置下分析测量了差分隐私参数,即(ε,δ)对于ABS摄动方法。关于关于摄动支持和方差与分割参数(ε,δ)的行为所得到的结果和见解,被用于谨慎选择摄动分布的方差,以便为所需的ε和摄动支持提供良好的δ在DP框架中。最后,我们提出了一种简单的采样方案,以实现ABS Cellkey方法中的摄动概率矩阵。所采样后的(ε,δ)对随着Cellkey大小的变化进行了数值分析。结果表明,采样和理论结果进行比较时,较大的Cellkey大小获得最好的结果,因为当我们比较采样和理论结果时,采样后的(ε,δ)对测量保持几乎不变。