用户级差分隐私能够为联邦学习中任一用户的数据提供可认证的隐私保证。然而,现有的确保用户级差分隐私的方法都以严重损害模型精度为代价。论文研究了造成这种损害的原因,发现解决这个问题的关键是在执行保证差分隐私的操作之前,自然地限制本地权重更新的范数。基于这一观察,论文提出了有界局部更新正则化和局部更新稀疏化两种技术,以达到在不牺牲隐私的前提下提高模型精度的目标,对框架的收敛性和隐私性进行了理论分析。大量的实验表明,该框架显著地改善了隐私与精度之间的权衡。
作者:Anda Cheng, Peisong Wang, Xi Sheryl Zhang, Jian Cheng