Neural implicit surface representations have emerged as a promising paradigm to capture 3D shapes in a continuous and resolution-independent manner. However, adapting them to articulated shapes is non-trivial. Existing approaches learn a backward warp field that maps deformed to canonical points. However, this is problematic since the backward warp field is pose dependent and thus requires large amounts of data to learn. To address this, we introduce SNARF, which combines the advantages of linear blend skinning (LBS) for polygonal meshes with those of neural implicit surfaces by learning a forward deformation field without direct supervision. This deformation field is defined in canonical, pose-independent space, allowing for generalization to unseen poses. Learning the deformation field from posed meshes alone is challenging since the correspondences of deformed points are defined implicitly and may not be unique under changes of topology. We propose a forward skinning model that finds all canonical correspondences of any deformed point using iterative root finding. We derive analytical gradients via implicit differentiation, enabling end-to-end training from 3D meshes with bone transformations. Compared to state-of-the-art neural implicit representations, our approach generalizes better to unseen poses while preserving accuracy. We demonstrate our method in challenging scenarios on (clothed) 3D humans in diverse and unseen poses.
翻译:以连续和分辨率独立的方式将三维外形作为有希望的范例,以连续和分辨率独立的方式捕捉三维外形。然而,将三维外形加以调整是非三维外形的。现有方法在外向反向扭曲成卡通点的反向扭曲场中学习。然而,这是个问题,因为后向外向外向外向外的外向外向外向外向外向外向外向外向外向外向外向外向外向外向外向外向外的外向外向外向外向外向外向外向外向外的外向外向外向外向外向外向外向外向外向外向外的外向外向外向外向外向外向外向外向外的外向外向外向外向外向外向外向外的外向外向外向外向外向外向外向外向外向外向外的外向外向外向外向外向外向外向外向外向外向外的外向外向外向外向外向外向外向外向外的外向外向外向外向外向外向外向外向外向外的外向外向外向外向外向外向外向外向外向外的外向外向外向外向外向外向外向外向外向外向外向外向外向外向外向外向外向外向外向外的外向外向外向外向外向外向外向外向外向外向外向外向外向外向外向外向外的外向外向外向外向外向外向外向外向外向外向外向外向外向外向外向外向外向外向外向外向外向外向外向外向外向外向外向外向外向外向外向外向外向外向外向外向外向外向外向外向外向外向外向外向外向外向外向外向外向外向外向外向外向外向外向外向外向外向外向外向外向外向外向外向外向外向外向外向外向外向外