A new concept of a multi-valued associative memory is introduced, generalizing a similar one in fuzzy neural networks. We expand the results on fuzzy associative memory with thresholds, to the case of a multi-valued one: we introduce the novel concept of such a network without numbers, investigate its properties, and give a learning algorithm in the multi-valued case. We discovered conditions under which it is possible to store given pairs of network variable patterns in such a multi-valued associative memory. In the multi-valued neural network, all variables are not numbers, but elements or subsets of a lattice, i.e., they are all only partially-ordered. Lattice operations are used to build the network output by inputs. In this paper, the lattice is assumed to be Brouwer and determines the implication used, together with other lattice operations, to determine the neural network output. We gave the example of the network use to classify aircraft/spacecraft trajectories.


翻译:引入了一种多价值联合内存的新概念, 在模糊的神经网络中推广类似的概念。 我们扩展了与阈值的模糊关联内存的结果, 以多值为例: 我们引入了无数字的网络的新概念, 调查其属性, 在多价值案例中给出学习算法。 我们发现了一种条件, 可以在这种多价值联合内存中存储给定的一对网络变量模式。 在多价值的神经网络中, 所有变量都不是数字, 而是一个通气网络的元素或子集, 即它们都是部分排序的。 Lattice 操作被用来通过输入构建网络输出。 在本文中, lattice 被假定为 Brouwer, 并确定了与其它通气操作一起用于确定神经网络输出的含意。 我们举例说明了网络用来对航空器/航天器轨迹进行分类。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
124+阅读 · 2022年4月21日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Memory-Gated Recurrent Networks
Arxiv
12+阅读 · 2020年12月24日
Position-aware Graph Neural Networks
Arxiv
15+阅读 · 2019年6月11日
Arxiv
31+阅读 · 2018年11月13日
Arxiv
24+阅读 · 2018年10月24日
Arxiv
11+阅读 · 2018年3月23日
VIP会员
相关资讯
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员