A new concept of a multi-valued associative memory is introduced, generalizing a similar one in fuzzy neural networks. We expand the results on fuzzy associative memory with thresholds, to the case of a multi-valued one: we introduce the novel concept of such a network without numbers, investigate its properties, and give a learning algorithm in the multi-valued case. We discovered conditions under which it is possible to store given pairs of network variable patterns in such a multi-valued associative memory. In the multi-valued neural network, all variables are not numbers, but elements or subsets of a lattice, i.e., they are all only partially-ordered. Lattice operations are used to build the network output by inputs. In this paper, the lattice is assumed to be Brouwer and determines the implication used, together with other lattice operations, to determine the neural network output. We gave the example of the network use to classify aircraft/spacecraft trajectories.
翻译:引入了一种多价值联合内存的新概念, 在模糊的神经网络中推广类似的概念。 我们扩展了与阈值的模糊关联内存的结果, 以多值为例: 我们引入了无数字的网络的新概念, 调查其属性, 在多价值案例中给出学习算法。 我们发现了一种条件, 可以在这种多价值联合内存中存储给定的一对网络变量模式。 在多价值的神经网络中, 所有变量都不是数字, 而是一个通气网络的元素或子集, 即它们都是部分排序的。 Lattice 操作被用来通过输入构建网络输出。 在本文中, lattice 被假定为 Brouwer, 并确定了与其它通气操作一起用于确定神经网络输出的含意。 我们举例说明了网络用来对航空器/航天器轨迹进行分类。