This paper studies graph-structured prediction for supervised learning on graphs with node-wise or edge-wise target dependencies. To solve this problem, recent works investigated combining graph neural networks (GNNs) with conventional structured prediction algorithms like conditional random fields. However, in this work, we pursue an alternative direction building on the recent successes of diffusion probabilistic models (DPMs). That is, we propose a new framework using DPMs to make graph-structured predictions. In the fully supervised setting, our DPM captures the target dependencies by iteratively updating each target estimate based on the estimates of nearby targets. We also propose a variational expectation maximization algorithm to train our DPM in the semi-supervised setting. Extensive experiments verify that our framework consistently outperforms existing neural structured prediction models on inductive and transductive node classification. We also demonstrate the competitive performance of our framework for algorithmic reasoning tasks.
翻译:为了解决这一问题,我们最近调查了将图形神经网络(GNNs)与传统结构预测算法(如有条件随机字段)相结合的工程。然而,在这项工作中,我们寻求以传播概率模型(DPMs)最近的成功经验为基础的替代方向。这就是说,我们提议一个新的框架,利用DPMs来作出图表结构预测。在完全监督下的环境下,我们的DPM通过根据附近目标估计数字反复更新每个目标估计来捕捉目标依赖性。我们还提议了一种变式预期最大化算法,以便在半受监督的环境中培训我们的DPM。广泛的实验证实我们的框架一贯地超越了现有的关于感性与感导节点分类的神经结构预测模型。我们还展示了我们算法推理任务框架的竞争性表现。