We propose a new framework to reconstruct a stochastic process $\left\{\mathbb{P}_{t}: t \in[0, T]\right\}$ using only samples from its marginal distributions, observed at start and end times $0$ and $T$. This reconstruction is useful to infer population dynamics, a crucial challenge, e.g., when modeling the time-evolution of cell populations from single-cell sequencing data. Our general framework encompasses the more specific Schr\"odinger bridge (SB) problem, where $\mathbb{P}_{t}$ represents the evolution of a thermodynamic system at almost equilibrium. Estimating such bridges is notoriously difficult, motivating our proposal for a novel adaptive scheme called the GSBflow. Our goal is to rely on Gaussian approximations of the data to provide the reference stochastic process needed to estimate SB. To that end, we solve the \acs{SB} problem with Gaussian marginals, for which we provide, as a central contribution, a closed-form solution and SDE-representation. We use these formulas to define the reference process used to estimate more complex SBs, and show that this does indeed help with its numerical solution. We obtain notable improvements when reconstructing both synthetic processes and single-cell genomics experiments.
翻译:我们建议一个新的框架来重建一个随机过程 $\left\\mathb{P ⁇ t}: t\ in[0, T\\right\right\$]$, 仅使用其边际分布的样本, 在开始和结束时观察, 美元和美元 。 重建有助于推断人口动态, 这是一项关键的挑战, 例如, 当用单细胞排序数据模拟细胞人口的时间变化时, 我们的总框架包含更具体的 Schr\\' poder桥( SB) 问题, 在那里, $\ mathb{P} 美元代表热力系统几乎均衡的演变。 估计这些桥梁是众所周知的困难, 激励我们提出称为 GSB 流的新型适应计划。 我们的目标是依靠数据的高斯近似近似点来提供估算SB 。 为此, 我们解决了高西亚边际(SB) 的问题, 我们作为中心贡献、 封闭式解决方案和SDE- 代表着SDE- presental imal 方法, 我们用这些公式来定义这个复杂、 数字化的公式。 我们用这些公式来定义了这个比较清晰的公式。