Trajectory prediction is a crucial undertaking in understanding entity movement or human behavior from observed sequences. However, current methods often assume that the observed sequences are complete while ignoring the potential for missing values caused by object occlusion, scope limitation, sensor failure, etc. This limitation inevitably hinders the accuracy of trajectory prediction. To address this issue, our paper presents a unified framework, the Graph-based Conditional Variational Recurrent Neural Network (GC-VRNN), which can perform trajectory imputation and prediction simultaneously. Specifically, we introduce a novel Multi-Space Graph Neural Network (MS-GNN) that can extract spatial features from incomplete observations and leverage missing patterns. Additionally, we employ a Conditional VRNN with a specifically designed Temporal Decay (TD) module to capture temporal dependencies and temporal missing patterns in incomplete trajectories. The inclusion of the TD module allows for valuable information to be conveyed through the temporal flow. We also curate and benchmark three practical datasets for the joint problem of trajectory imputation and prediction. Extensive experiments verify the exceptional performance of our proposed method. As far as we know, this is the first work to address the lack of benchmarks and techniques for trajectory imputation and prediction in a unified manner.


翻译:轨迹预测是理解实体移动或人类行为的重要任务,需要从观察序列中获得信息。 然而,当前的方法常常假设观察序列是完整的,忽略了由对象遮挡,范围限制,传感器故障等导致的缺失值的可能性。这种局限性不可避免地阻碍了轨迹预测的准确性。为了解决这个问题,本文提出了一个统一的框架:基于图形的条件变分递归神经网络 (GC-VRNN),可以同时进行轨迹填充和预测。具体而言,我们引入了一种新颖的多空间图神经网络 (MS-GNN),可以从不完整的观测数据中提取空间特征并利用缺失模式。此外,我们还采用了一个条件 VRNN,具有专门设计的时间衰减(TD)模块,来捕获不完整轨迹中的时间依赖性和时间缺失模式。TD模块的引入使有价值的信息可以通过时间流动传递。我们还为轨迹填充和预测的联合问题制作和测试了三个实用数据集。大量实验验证了我们提出的方法的出色性能。据我们所知,这是第一篇在统一的轨迹填充和预测中解决基准和技术缺乏的论文。

0
下载
关闭预览

相关内容

递归神经网络(RNN)是神经网络的一种。单纯的RNN因为无法处理随着递归,权重指数级爆炸或梯度消失问题,难以捕捉长期时间关联;而结合不同的LSTM可以很好解决这个问题。 时间递归神经网络可以描述动态时间行为,因为和前馈神经网络(feedforward neural network)接受较特定结构的输入不同,RNN将状态在自身网络中循环传递,因此可以接受更广泛的时间序列结构输入。手写识别是最早成功利用RNN的研究结果。
Nat. Commun. | 深度学习将大分子分解为独立的马尔可夫域
专知会员服务
16+阅读 · 2022年12月9日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
笔记 | Deep active learning for named entity recognition
黑龙江大学自然语言处理实验室
24+阅读 · 2018年5月27日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月17日
VIP会员
相关VIP内容
Nat. Commun. | 深度学习将大分子分解为独立的马尔可夫域
专知会员服务
16+阅读 · 2022年12月9日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员