Trajectory prediction is a crucial undertaking in understanding entity movement or human behavior from observed sequences. However, current methods often assume that the observed sequences are complete while ignoring the potential for missing values caused by object occlusion, scope limitation, sensor failure, etc. This limitation inevitably hinders the accuracy of trajectory prediction. To address this issue, our paper presents a unified framework, the Graph-based Conditional Variational Recurrent Neural Network (GC-VRNN), which can perform trajectory imputation and prediction simultaneously. Specifically, we introduce a novel Multi-Space Graph Neural Network (MS-GNN) that can extract spatial features from incomplete observations and leverage missing patterns. Additionally, we employ a Conditional VRNN with a specifically designed Temporal Decay (TD) module to capture temporal dependencies and temporal missing patterns in incomplete trajectories. The inclusion of the TD module allows for valuable information to be conveyed through the temporal flow. We also curate and benchmark three practical datasets for the joint problem of trajectory imputation and prediction. Extensive experiments verify the exceptional performance of our proposed method. As far as we know, this is the first work to address the lack of benchmarks and techniques for trajectory imputation and prediction in a unified manner.
翻译:轨迹预测是理解实体移动或人类行为的重要任务,需要从观察序列中获得信息。 然而,当前的方法常常假设观察序列是完整的,忽略了由对象遮挡,范围限制,传感器故障等导致的缺失值的可能性。这种局限性不可避免地阻碍了轨迹预测的准确性。为了解决这个问题,本文提出了一个统一的框架:基于图形的条件变分递归神经网络 (GC-VRNN),可以同时进行轨迹填充和预测。具体而言,我们引入了一种新颖的多空间图神经网络 (MS-GNN),可以从不完整的观测数据中提取空间特征并利用缺失模式。此外,我们还采用了一个条件 VRNN,具有专门设计的时间衰减(TD)模块,来捕获不完整轨迹中的时间依赖性和时间缺失模式。TD模块的引入使有价值的信息可以通过时间流动传递。我们还为轨迹填充和预测的联合问题制作和测试了三个实用数据集。大量实验验证了我们提出的方法的出色性能。据我们所知,这是第一篇在统一的轨迹填充和预测中解决基准和技术缺乏的论文。