We study different approaches to implementing sparse-in-time observations into the the Azouani-Olson-Titi data assimilation algorithm. We propose a new method which introduces a "data assimilation window" separate from the observational time interval. We show that by making this window as small as possible, we can drastically increase the strength of the nudging parameter without losing stability. Previous methods used old data to nudge the solution until a new observation was made. In contrast, our method stops nudging the system almost immediately after an observation is made, allowing the system relax to the correct physics. We show that this leads to an order-of-magnitude improvement in the time to convergence in our 3D Navier-Stokes simulations. Moreover, our simulations indicate that our approach converges at nearly the same rate as the idealized method of direct replacement of low Fourier modes proposed by Hayden, Olson, and Titi (HOT). However, our approach can be readily adapted to non-idealized settings, such as finite element methods, finite difference methods, etc., since there is no need to access Fourier modes as our method works for general interpolants. It is in this sense that we think of our approach as ``second best;'' that is, the ``best'' method would be the direct replacement of Fourier modes as in HOT, but this idealized approach is typically not feasible in physically realistic settings. While our method has a convergence rate that is slightly sub-optimal compared to the idealized method, it is directly compatible with real-world applications. Moreover, we prove analytically that these new algorithms are globally well-posed, and converge to the true solution exponentially fast in time. In addition, we provide the first 3D computational validation of HOT algorithm.


翻译:我们研究对Azouani-Olson-Titi数据同化算法采用不同的方法,对Azouani-Olson-Titi数据同化算法进行零星的观测。我们提出一种新的方法,将“数据同化窗口”与观察时间间隔分开引入“数据同化窗口”。我们表明,通过尽可能缩小这个窗口,我们可以在不失去稳定性的情况下大幅提高编织参数的强度。以前的方法使用旧数据来推动解决办法,直到进行新的观察。相比之下,我们的方法几乎在进行观察之后就停止对系统进行分解,使系统能够与正确的物理相容。我们表明,这导致在时间与3D Navier-Stokeks模拟的趋同之间,出现了一个“数据同化窗口”的新方法。我们的模拟表明,我们的方法与直接取代低四面模式的理想方法几乎相同, 而我们最接近于这个方法的就是直流化方法。我们最接近的就是直态的极化方法。我们最接近的就是这个方法,我们最接近的就是直态的变的极化方法。</s>

0
下载
关闭预览

相关内容

让 iOS 8 和 OS X Yosemite 无缝切换的一个新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source: Apple - iOS 8
不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
69+阅读 · 2022年7月11日
开源书:PyTorch深度学习起步
专知会员服务
49+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
169+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年4月26日
Arxiv
0+阅读 · 2023年4月25日
VIP会员
相关VIP内容
不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
69+阅读 · 2022年7月11日
开源书:PyTorch深度学习起步
专知会员服务
49+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
169+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
相关资讯
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员