Large time-stepping is important for efficient long-time simulations of deterministic and stochastic Hamiltonian dynamical systems. Conventional structure-preserving integrators, while being successful for generic systems, have limited tolerance to time step size due to stability and accuracy constraints. We propose to use data to innovate classical integrators so that they can be adaptive to large time-stepping and are tailored to each specific system. In particular, we introduce NySALT, Nystr\"{o}m-type inference-based schemes adaptive to large time-stepping. The NySALT has optimal parameters for each time step learnt from data by minimizing the one-step prediction error. Thus, it is tailored for each time step size and the specific system to achieve optimal performance and tolerate large time-stepping in an adaptive fashion. We prove and numerically verify the convergence of the estimators as data size increases. Furthermore, analysis and numerical tests on the deterministic and stochastic Fermi-Pasta-Ulam (FPU) models show that NySALT enlarges the maximal admissible step size of linear stability, and quadruples the time step size of the St\"{o}rmer--Verlet and the BAOAB when maintaining similar levels of accuracy.
翻译:大型时间跨步对于确定性和随机性汉密尔顿动态系统的长期有效模拟非常重要。 常规结构保护融合器虽然在通用系统方面很成功,但由于稳定性和准确性限制,对时间步数的容忍度有限。 我们提议利用数据创新传统融合器,以便它们适应大型时间步数,并适合每个特定系统。 特别是, 我们引入了NySALT, Nystr\"{o}m- 类型基于推断的系统, 适应大型时间步数。 NySALT 拥有通过尽量减少单步预测错误从数据中学习的每个时间步数的最佳参数。 因此, 它适合每个时间步数和具体系统, 以实现最佳性能, 并适应性地容忍大型时间跨步数。 随着数据规模的增大, 我们证明并用数字来验证估计器的趋同。 此外, 对确定性和随机性Fermi- Pasta- Ulam (FPUPU) 模型的分析和数字测试表明, NySALT 将线性稳定度和定式时间段的顶级的可接受步数大小, 当保持直径稳定时, Stard- Obrbrbr) 的阶 级的阶值级级级的阶级的阶段级大小时, 。