Large time-stepping is important for efficient long-time simulations of deterministic and stochastic Hamiltonian dynamical systems. Conventional structure-preserving integrators, while being successful for generic systems, have limited tolerance to time step size due to stability and accuracy constraints. We propose to use data to innovate classical integrators so that they can be adaptive to large time-stepping and are tailored to each specific system. In particular, we introduce NySALT, Nystr\"{o}m-type inference-based schemes adaptive to large time-stepping. The NySALT has optimal parameters for each time step learnt from data by minimizing the one-step prediction error. Thus, it is tailored for each time step size and the specific system to achieve optimal performance and tolerate large time-stepping in an adaptive fashion. We prove and numerically verify the convergence of the estimators as data size increases. Furthermore, analysis and numerical tests on the deterministic and stochastic Fermi-Pasta-Ulam (FPU) models show that NySALT enlarges the maximal admissible step size of linear stability, and quadruples the time step size of the St\"{o}rmer--Verlet and the BAOAB when maintaining similar levels of accuracy.


翻译:大型时间跨步对于确定性和随机性汉密尔顿动态系统的长期有效模拟非常重要。 常规结构保护融合器虽然在通用系统方面很成功,但由于稳定性和准确性限制,对时间步数的容忍度有限。 我们提议利用数据创新传统融合器,以便它们适应大型时间步数,并适合每个特定系统。 特别是, 我们引入了NySALT, Nystr\"{o}m- 类型基于推断的系统, 适应大型时间步数。 NySALT 拥有通过尽量减少单步预测错误从数据中学习的每个时间步数的最佳参数。 因此, 它适合每个时间步数和具体系统, 以实现最佳性能, 并适应性地容忍大型时间跨步数。 随着数据规模的增大, 我们证明并用数字来验证估计器的趋同。 此外, 对确定性和随机性Fermi- Pasta- Ulam (FPUPU) 模型的分析和数字测试表明, NySALT 将线性稳定度和定式时间段的顶级的可接受步数大小, 当保持直径稳定时, Stard- Obrbrbr) 的阶 级的阶值级级级的阶级的阶段级大小时, 。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
25+阅读 · 2021年4月2日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年9月4日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员