In this paper, we present a Bayesian method for statistical model checking (SMC) of probabilistic hyperproperties specified in the logic HyperPCTL* on discrete-time Markov chains (DTMCs). While SMC of HyperPCTL* using sequential probability ratio test (SPRT) has been explored before, we develop an alternative SMC algorithm based on Bayesian hypothesis testing. In comparison to PCTL*, verifying HyperPCTL* formulae is complex owing to their simultaneous interpretation on multiple paths of the DTMC. In addition, extending the bottom-up model-checking algorithm of the non-probabilistic setting is not straight forward due to the fact that SMC does not return exact answers to the satisfiability problems of subformulae, instead, it only returns correct answers with high-confidence. We propose a recursive algorithm for SMC of HyperPCTL* based on a modified Bayes' test that factors in the uncertainty in the recursive satisfiability results. We have implemented our algorithm in a Python toolbox, HyProVer, and compared our approach with the SPRT based SMC. Our experimental evaluation demonstrates that our Bayesian SMC algorithm performs better both in terms of the verification time and the number of samples required to deduce satisfiability of a given HyperPCTL* formula.
翻译:在本文中,我们展示了一种巴伊西亚方法,用于对离散时间马可夫链(DMCs)的逻辑超常PCTL* 所定义的概率性超强性进行统计模型检查(SMC ) 。虽然以前曾探讨过使用连续概率比率测试(SPRT)的超超常PCTL* 的SMC SMC,但我们开发了一种基于巴伊西亚假设测试的替代性SMC算法。与PCTL* 相比,核查超超常PCTL* 公式是复杂的,因为它们在DTMC多条路径上的同声解。此外,扩大非概率性环境的自下而上模式检查算法并非直线前进,因为SMC没有对子公式的可容性问题做出准确的回答,相反,我们只能以高度的自信返回正确的答案。我们提议了超高端PCT* 的SMCSM* 公式的回溯性算法,我们用Sython 工具箱、 HyProfier 和SRT 的SyMC 的Slaviculizal 方法进行了更好的Syal 和SyPARVT的Sudal 方法,我们在Slavical 的Sudal 的Supal 的Sudalbalbalbalbalbal 的测试方法,我们用Sup 的S