Cross-domain image retrieval aims at retrieving images across different domains to excavate cross-domain classificatory or correspondence relationships. This paper studies a less-touched problem of cross-domain image retrieval, i.e., unsupervised cross-domain image retrieval, considering the following practical assumptions: (i) no correspondence relationship, and (ii) no category annotations. It is challenging to align and bridge distinct domains without cross-domain correspondence. To tackle the challenge, we present a novel Correspondence-free Domain Alignment (CoDA) method to effectively eliminate the cross-domain gap through In-domain Self-matching Supervision (ISS) and Cross-domain Classifier Alignment (CCA). To be specific, ISS is presented to encapsulate discriminative information into the latent common space by elaborating a novel self-matching supervision mechanism. To alleviate the cross-domain discrepancy, CCA is proposed to align distinct domain-specific classifiers. Thanks to the ISS and CCA, our method could encode the discrimination into the domain-invariant embedding space for unsupervised cross-domain image retrieval. To verify the effectiveness of the proposed method, extensive experiments are conducted on four benchmark datasets compared with six state-of-the-art methods.
翻译:跨部图像检索旨在检索不同领域的图像,以挖掘跨部分类或通信关系。本文研究跨部图像检索(即无人监督的跨部域图像检索)方面一个不太容易处理的问题,即无监督的跨部域图像检索,同时考虑到以下实际假设:(一) 没有通信关系,和(二) 没有分类说明。为了在没有跨部通信的情况下对不同领域进行对齐和连接具有挑战性。为了应对挑战,我们提出了一个小说“无通信域对齐”方法,通过内部自对称监督(ISS)和跨部域分类校准(CCA),有效消除跨部域差距。具体地说,国际空间服务社通过开发一个新的自我匹配监督机制,将歧视性信息纳入潜在的共同空间。为了缓解跨部差异,建议国际空间服务社将不同的域特定分类系统加以对齐。由于国际空间服务社和CCA,我们的方法可以将歧视纳入域内置空间以用于未监督的跨部域校准的交叉图像校准(ISSISS)和跨部分类校准(C)校准六项基准检索方法。核查国家拟议基准数据的有效性方法。