This paper proposes the Nerual Energy Descent (NED) via neural network evolution equations for a wide class of deep learning problems. We show that deep learning can be reformulated as the evolution of network parameters in an evolution equation and the steady state solution of the partial differential equation (PDE) provides a solution to deep learning. This equation corresponds to a gradient descent flow of a variational problem and hence the proposed time-dependent PDE solves an energy minimization problem to obtain a global minimizer of deep learning. This gives a novel interpretation and solution to deep learning optimization. The computational complexity of the proposed energy descent method can be enhanced by randomly sampling the spatial domain of the PDE leading to an efficient NED. Numerical examples are provided to demonstrate the numerical advantage of NED over stochastic gradient descent (SGD).
翻译:本文建议通过神经网络进化等式,通过神经网络进化等式,为一系列广泛的深层学习问题提供Nerual能源源(NED) 。 我们表明,深层学习可以被重塑,因为网络参数在进化等式中的演进和部分差异方程的稳健状态解决方案为深层学习提供了解决办法。这个等式相当于变异问题的梯度下降流,因此,拟议的基于时间的PDE解决了一个能量最小化问题,以获得全球深层学习的最小化。这为深层学习优化提供了新的解释和解决方案。通过随机抽样研究PDE的空间领域,可以提高拟议的能源下降方法的计算复杂性,从而导致高效的NED。提供了数字实例,以证明NED在数字上相对于随机梯度梯度下降的优势。