We study continuous data assimilation (CDA) applied to projection and penalty methods for the Navier-Stokes (NS) equations. Penalty and projection methods are more efficient than consistent NS discretizations, however are less accurate due to modeling error (penalty) and splitting error (projection). We show analytically and numerically that with measurement data and properly chosen parameters, CDA can effectively remove these splitting and modeling errors and provide long time optimally accurate solutions.
翻译:我们研究用于Navier-Stokes(NS)等式的预测和惩罚方法的连续数据同化(CDA)方法,刑罚和预测方法比一致的NS分化方法效率更高,然而,由于模型错误(刑罚)和分裂错误(预测)的模型错误(预测),则不那么准确。 我们从分析和数字上表明,有了测量数据和适当选择的参数,CDA可以有效地消除这些分裂和建模错误,并提供长期的最佳准确解决方案。