Multi-array systems are widely used in sonar and radar applications. They can improve communication speeds, target discrimination, and imaging. In the case of a multibeam sonar system that can operate two receiving arrays, we derive new adaptive to improve detection capabilities compared to traditional sonar detection approaches. To do so, we more specifically consider correlated arrays, whose covariance matrices are estimated up to scale factors, and an impulsive clutter. In a partially homogeneous environment, the 2-step Generalized Likelihood ratio Test (GLRT) and Rao approach lead to a generalization of the Adaptive Normalized Matched Filter (ANMF) test and an equivalent numerically simpler detector with a well-established texture Constant False Alarm Rate (CFAR) behavior. Performances are discussed and illustrated with theoretical examples, numerous simulations, and insights into experimental data. Results show that these detectors outperform their competitors and have stronger robustness to environmental unknowns.


翻译:多阵列系统在声纳和雷达应用中得到广泛使用。它们可以提高通信速度、目标区分能力和成像效果。在多波束声纳系统中,该系统可以操作两个接收阵列,我们通过新的自适应方法改进了传统声纳检测方法以提高检测能力。更具体地,我们考虑了协相关的阵列,其协方差矩阵可被估计至比例因子,并考虑了阻尼式杂波强烈的情况。在部分均匀环境下,采用两阶段广义似然比检验(GLRT)和Rao方法,得到了自适应归一化匹配滤波器(ANMF)检测的推广和等效的、数值上更简单的检测器,具有良好的纹理恒虚警率(CFAR)行为。通过理论实例、大量模拟以及对实验数据的深入分析,对检测器的性能进行了讨论和阐述。结果表明,这些检测器的检测性能优于其竞争对手,并且具有更强的环境噪声干扰承受能力。

0
下载
关闭预览

相关内容

《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Arxiv
11+阅读 · 2019年4月15日
VIP会员
相关VIP内容
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员