Next-generation cosmic microwave background (CMB) surveys are expected to provide valuable information about the primordial universe by creating maps of the mass along the line of sight. Traditional tools for creating these lensing convergence maps include the quadratic estimator and the maximum likelihood based iterative estimator. Here, we apply a generative adversarial network (GAN) to reconstruct the lensing convergence field. We compare our results with a previous deep learning approach -- Residual-UNet -- and discuss the pros and cons of each. In the process, we use training sets generated by a variety of power spectra, rather than the one used in testing the methods.
翻译:下一代宇宙微波背景调查(CMB)预计将通过沿着视线绘制质量图,提供关于原始宇宙的宝贵信息。创建这些透镜趋同图的传统工具包括二次测深仪和以最大可能性为基础的迭代测深仪。在这里,我们应用基因对抗网络重建透光场。我们将我们的结果与先前的深层次学习方法 -- -- 残余-UNet -- -- 进行比较,并讨论每一种方法的利弊。在这个过程中,我们使用由各种电源光谱生成的培训组,而不是用于测试方法的培训组。