Empirically observed time series in physics, biology, or medicine, are commonly generated by some underlying dynamical system (DS) which is the target of scientific interest. There is an increasing interest to harvest machine learning methods to reconstruct this latent DS in a data-driven, unsupervised way. In many areas of science it is common to sample time series observations from many data modalities simultaneously, e.g. electrophysiological and behavioral time series in a typical neuroscience experiment. However, current machine learning tools for reconstructing DSs usually focus on just one data modality. Here we propose a general framework for multi-modal data integration for the purpose of nonlinear DS reconstruction and the analysis of cross-modal relations. This framework is based on dynamically interpretable recurrent neural networks as general approximators of nonlinear DSs, coupled to sets of modality-specific decoder models from the class of generalized linear models. Both an expectation-maximization and a variational inference algorithm for model training are advanced and compared. We show on nonlinear DS benchmarks that our algorithms can efficiently compensate for too noisy or missing information in one data channel by exploiting other channels, and demonstrate on experimental neuroscience data how the algorithm learns to link different data domains to the underlying dynamics.
翻译:在物理学、生物学或医学中,经常观察到的时间序列,通常是由某些具有科学兴趣的内在动态系统(DS)产生的,这是科学利益的目标。人们越来越有兴趣以数据驱动、不受监督的方式采集机器学习方法,以重建这种潜伏的DS。在许多科学领域,同时从许多数据模式(例如电子生理学和行为时间序列)中抽取时间序列观测,在典型的神经科学实验中,这是常见的。然而,当前重建DS的机器学习工具通常只侧重于一种数据模式。我们在这里提议了一个多模式数据整合总框架,目的是进行非线性DS重建,分析跨模式关系。这个框架基于动态可解释的经常性神经网络,作为非线性DS系统的一般近似数据模式,同时从典型的线性模型中抽取一套特定模式的解码模型。对于模型培训的预期-最大化和变异性推算法都是先进的和比较的。我们展示了非线性DS基准,即我们的算法能够有效地利用其他数据链路段,从一个实验性数据链路段到一个实验性数据链路段,从一个数据链路段到另一个数据链路段学习。