In this work we present a rather general approach to approximate the solutions of nonlocal conservation laws. In a first step, we approximate the nonlocal term with an appropriate quadrature rule applied to the spatial discretization. Then, we apply a numerical flux function on the reduced problem. We present explicit conditions which such a numerical flux function needs to fulfill. These conditions guarantee the convergence to the weak entropy solution of the considered model class. Numerical examples validate our theoretical results and demonstrate that the approach can be applied to other nonlocal problems.
翻译:在这项工作中,我们提出了一种逼近非局部守恒律解的相当通用方法。首先,我们利用合适的积分公式逼近非局部项,并应用于空间离散化。然后,我们在简化后的问题上采用数值通量函数。我们提出了这样的数值通量函数需要满足的显式条件。这些条件保证了收敛到所考虑的模型类的弱熵解。数值例子验证了我们的理论结果并证明该方法可应用于其他非局部问题。