项目名称: 几类守恒律双曲组弱解的适定性及长时间性态

项目编号: No.11201115

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 数理科学和化学

项目作者: 杨永富

作者单位: 河海大学

项目金额: 22万元

中文摘要: 拟线性守恒律双曲组的弱解的存在唯一性问题一直是一个非常活跃的前沿研究方向。对弱解的适定性及长时间性态的研究有多方面的应用背景,在数学理论上也是一个挑战。本课题主要通过Euler-Lagrange型坐标变换的方法,研究线性退化守恒律双曲组的熵解的显示表示,在此基础上讨论其L^1稳定性并给出其长时间性态的精确描述。拟解决的主要问题包括:1. 对线性退化的富有组,借助于其Cauchy问题熵解的显示表示,讨论其L^1稳定性及显示长时间性态,并给出其应用;2. 对2×线性退化双曲组,考虑其混合初边值问题熵解的显示表示,进而讨论其L^1稳定性及显示长时间性态;3. 对一些具体的守恒律双曲组考虑在粘性影响下其弱解的适定性及长时间性态。

中文关键词: 适定性;弱强唯一性;长时间行为;相对熵;渐近极限

英文摘要: The existence and uniqueness of the weak solutions to quasilinear hyperbolic systems with conservation laws is always a quite active topic. There are many application backgrounds related to well posedness and long-time behaviors of weak solutions and, from mathematical point of view, the research on this subject is a big challenge. By a change of variable of Euler-Lagrange type, this project is mainly concerned with the explicit expressions of entropy solutions to linearly degenerate hyperbolic systems with conservation laws. Moreover, based on this result, we consider its L^1 stability and the precise description of its long-time behaviors.We are going to investigate the following problems: 1. For linearly degenerate hyperbolic systems of rich type, utilizing the explicit expressions of entropy solutions to the Cauchy problem, we are concerned with its L^1 stability and the explicit long-time behaviors. Some applications are presented. 2. For 2×linearly degenerate hyperbolic systems, the explicit expressions of the entropy solutions to the mixed initial boundary value problem are considered. Furthermore, we consider its L^1 stability and its explicit long-time behaviors; 3. At the prescence of viscosity effects, for some kinds of hyperbolic systems of conservation laws, we discuss the well posedness and long

英文关键词: well-posedness;weak-strong uniqueness;long time behaviors;relative entropy;asympototic limits

成为VIP会员查看完整内容
0

相关内容

MIT算法圣经书《算法导论》第四版!
专知会员服务
241+阅读 · 2022年4月15日
时间序列计量经济学
专知会员服务
47+阅读 · 2022年4月8日
南大《时间序列分析 (Time Series Analysis)》课程,推荐!
专知会员服务
153+阅读 · 2022年3月31日
【博士论文】多视光场光线空间几何模型研究
专知会员服务
22+阅读 · 2021年12月6日
【经典书】统计学理论,925页pdf
专知会员服务
165+阅读 · 2020年12月6日
【哈佛经典书】概率论与随机过程及其应用,382页pdf
专知会员服务
61+阅读 · 2020年11月14日
专知会员服务
27+阅读 · 2020年9月9日
《常微分方程》笔记,419页pdf
专知会员服务
71+阅读 · 2020年8月2日
【ICLR2020】图神经网络与图像处理,微分方程,27页ppt
专知会员服务
47+阅读 · 2020年6月6日
零跑都过万了,留给蔚来的时间不多了
36氪
0+阅读 · 2022年4月2日
从最小二乘法到卡尔曼滤波
PaperWeekly
1+阅读 · 2021年12月22日
NeurIPS21 || 矢量量化的VQ-GNN
图与推荐
0+阅读 · 2021年12月3日
基于 Carsim 2016 和 Simulink的无人车运动控制联合仿真(三)
R语言之数据分析高级方法「时间序列」
R语言中文社区
17+阅读 · 2018年4月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月18日
Warped Dynamic Linear Models for Time Series of Counts
Deformable Style Transfer
Arxiv
14+阅读 · 2020年3月24日
Self-Attention Graph Pooling
Arxiv
13+阅读 · 2019年6月13日
小贴士
相关VIP内容
MIT算法圣经书《算法导论》第四版!
专知会员服务
241+阅读 · 2022年4月15日
时间序列计量经济学
专知会员服务
47+阅读 · 2022年4月8日
南大《时间序列分析 (Time Series Analysis)》课程,推荐!
专知会员服务
153+阅读 · 2022年3月31日
【博士论文】多视光场光线空间几何模型研究
专知会员服务
22+阅读 · 2021年12月6日
【经典书】统计学理论,925页pdf
专知会员服务
165+阅读 · 2020年12月6日
【哈佛经典书】概率论与随机过程及其应用,382页pdf
专知会员服务
61+阅读 · 2020年11月14日
专知会员服务
27+阅读 · 2020年9月9日
《常微分方程》笔记,419页pdf
专知会员服务
71+阅读 · 2020年8月2日
【ICLR2020】图神经网络与图像处理,微分方程,27页ppt
专知会员服务
47+阅读 · 2020年6月6日
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员