项目名称: 几类具非标准增长的拟线性椭圆和抛物型方程的研究

项目编号: No.11201098

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 数理科学和化学

项目作者: 张超

作者单位: 哈尔滨工业大学

项目金额: 23万元

中文摘要: 本项目主要致力于几类具有非标准增长性条件的拟线性椭圆和抛物型偏微分方程的研究.这类方程有着丰富的物理意义和广泛的应用背景,如弹性力学,电流变流体动力学和图像处理等实际问题都可以归结为具非标准增长性条件的拟线性椭圆与抛物型方程来描述.尽管对于这类方程的研究已取得许多重要成果,但许多物理现象尚不能从这些方程已有的数学理论中得到准确和合理的解释,仍然有许多深刻的数学问题值得进一步探讨.我们将在弱解、重整化解和熵解等框架下研究这些方程解的适定性及各种解之间的内在联系,证明椭圆与抛物型p(x)-Laplace方程弱解的全局梯度估计以及指数p(x)趋于1和趋于无穷时解的渐近行为.

中文关键词: 椭圆型;抛物型;拟线性;适定性;正则性

英文摘要: This project is mainly devoted to the study of some class of quasilinear elliptic and parabolic equations with non-standard growth conditions. This kind of equations has rich physical significance and broad applications. Many practical problems, such as elastic mechanics, electro-rheological fluid dynamics and image processing, are all can be come down to the quasilinear elliptic and parabolic equations with non-standard growth conditions to solve. Although a large number of important achievements have been obtained for such equations, lots of physical phenomena cannot be given an accurate and reasonable explanation by the known mathematical theory of these equations. There are still many profound mathematical problems which are worth further investigation. We will study the wellposeness of solutions of these equations in the framework of weak solutions, renormalized solutions and entropy solutions and the inner link between them, prove the global gradient estimates of weak solutions for the elliptic and parabolic p(x)-Laplace equations and prove the asymptotic behavior of solutions when the exponent p(x) goes to 1 and infinity.

英文关键词: Elliptic;Parabolic;Quasilinear;Well-posedness;Regularity

成为VIP会员查看完整内容
0

相关内容

【博士论文】吉布斯分布的局部、动态与快速采样算法
专知会员服务
28+阅读 · 2021年11月26日
逆优化: 理论与应用
专知会员服务
36+阅读 · 2021年9月13日
【开放书】《矩阵流形优化算法》,241页pdf
专知会员服务
93+阅读 · 2021年7月3日
专知会员服务
32+阅读 · 2021年7月1日
专知会员服务
41+阅读 · 2021年4月2日
「数据数学:从理论到计算」EPFL硬核课程
专知会员服务
42+阅读 · 2021年1月31日
专知会员服务
73+阅读 · 2020年12月7日
《常微分方程》笔记,419页pdf
专知会员服务
71+阅读 · 2020年8月2日
【ICLR2020】图神经网络与图像处理,微分方程,27页ppt
专知会员服务
47+阅读 · 2020年6月6日
图神经网络的困境,用微分几何和代数拓扑解决
机器之心
4+阅读 · 2022年3月27日
给GNN一堆数据,它自己发现了万有引力定律
图与推荐
0+阅读 · 2022年3月15日
正则化方法小结
极市平台
2+阅读 · 2021年11月24日
神经网络常微分方程 (Neural ODEs) 解析
AI科技评论
40+阅读 · 2019年8月9日
GAN的数学原理
算法与数学之美
14+阅读 · 2017年9月2日
酒鬼漫步的数学——随机过程 | 张天蓉专栏
知识分子
10+阅读 · 2017年8月13日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
An Attentive Survey of Attention Models
Arxiv
44+阅读 · 2020年12月15日
Self-Attention Graph Pooling
Arxiv
13+阅读 · 2019年6月13日
Object Detection in 20 Years: A Survey
Arxiv
48+阅读 · 2019年5月13日
小贴士
相关VIP内容
【博士论文】吉布斯分布的局部、动态与快速采样算法
专知会员服务
28+阅读 · 2021年11月26日
逆优化: 理论与应用
专知会员服务
36+阅读 · 2021年9月13日
【开放书】《矩阵流形优化算法》,241页pdf
专知会员服务
93+阅读 · 2021年7月3日
专知会员服务
32+阅读 · 2021年7月1日
专知会员服务
41+阅读 · 2021年4月2日
「数据数学:从理论到计算」EPFL硬核课程
专知会员服务
42+阅读 · 2021年1月31日
专知会员服务
73+阅读 · 2020年12月7日
《常微分方程》笔记,419页pdf
专知会员服务
71+阅读 · 2020年8月2日
【ICLR2020】图神经网络与图像处理,微分方程,27页ppt
专知会员服务
47+阅读 · 2020年6月6日
相关资讯
图神经网络的困境,用微分几何和代数拓扑解决
机器之心
4+阅读 · 2022年3月27日
给GNN一堆数据,它自己发现了万有引力定律
图与推荐
0+阅读 · 2022年3月15日
正则化方法小结
极市平台
2+阅读 · 2021年11月24日
神经网络常微分方程 (Neural ODEs) 解析
AI科技评论
40+阅读 · 2019年8月9日
GAN的数学原理
算法与数学之美
14+阅读 · 2017年9月2日
酒鬼漫步的数学——随机过程 | 张天蓉专栏
知识分子
10+阅读 · 2017年8月13日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员