The discrete Cheeger inequality, due to Alon and Milman (J. Comb. Theory Series B 1985), is an indispensable tool for converting the combinatorial condition of graph expansion to an algebraic condition on the eigenvalues of the graph adjacency matrix. We prove a generalization of Cheeger's inequality, giving an algebraic condition equivalent to small set expansion. This algebraic condition is the p-to-q hypercontractivity of the top eigenspace for the graph adjacency matrix. Our result generalizes a theorem of Barak et al (STOC 2012) to the low small set expansion regime, and has a dramatically simpler proof; this answers a question of Barak (2014).


翻译:离散Cheeger不等式是由Alon和Milman (J. Comb. Theory Series B 1985)提出的,它是将图扩展的组合条件转换为图邻接矩阵特征值的代数条件所必不可少的工具。我们证明了Cheeger不等式的一般化形式,给出了一个等价于小集合扩展的代数条件。这个代数条件是图邻接矩阵的顶部特征空间的p-to-q超收缩性。我们的结果将Barak等人(STOC 2012)的定理推广到了小集合扩展的低限制情况,并且具有极其简单的证明; 这回答了Barak (2014)的一个问题。

0
下载
关闭预览

相关内容

【硬核书】树与网络上的概率,716页pdf
专知会员服务
74+阅读 · 2021年12月8日
【干货书】开放数据结构,Open Data Structures,337页pdf
专知会员服务
17+阅读 · 2021年9月17日
机器学习组合优化
专知会员服务
110+阅读 · 2021年2月16日
【经典书】线性代数,352页pdf教你应该这样学
专知会员服务
106+阅读 · 2020年12月20日
专知会员服务
51+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
Neural Eigenmap: 基于谱学习的结构化表示学习
PaperWeekly
1+阅读 · 2022年11月29日
概率论和机器学习中的不等式
PaperWeekly
2+阅读 · 2022年11月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年6月2日
Arxiv
0+阅读 · 2023年6月1日
VIP会员
相关VIP内容
【硬核书】树与网络上的概率,716页pdf
专知会员服务
74+阅读 · 2021年12月8日
【干货书】开放数据结构,Open Data Structures,337页pdf
专知会员服务
17+阅读 · 2021年9月17日
机器学习组合优化
专知会员服务
110+阅读 · 2021年2月16日
【经典书】线性代数,352页pdf教你应该这样学
专知会员服务
106+阅读 · 2020年12月20日
专知会员服务
51+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员