The discrete Cheeger inequality, due to Alon and Milman (J. Comb. Theory Series B 1985), is an indispensable tool for converting the combinatorial condition of graph expansion to an algebraic condition on the eigenvalues of the graph adjacency matrix. We prove a generalization of Cheeger's inequality, giving an algebraic condition equivalent to small set expansion. This algebraic condition is the p-to-q hypercontractivity of the top eigenspace for the graph adjacency matrix. Our result generalizes a theorem of Barak et al (STOC 2012) to the low small set expansion regime, and has a dramatically simpler proof; this answers a question of Barak (2014).
翻译:离散Cheeger不等式是由Alon和Milman (J. Comb. Theory Series B 1985)提出的,它是将图扩展的组合条件转换为图邻接矩阵特征值的代数条件所必不可少的工具。我们证明了Cheeger不等式的一般化形式,给出了一个等价于小集合扩展的代数条件。这个代数条件是图邻接矩阵的顶部特征空间的p-to-q超收缩性。我们的结果将Barak等人(STOC 2012)的定理推广到了小集合扩展的低限制情况,并且具有极其简单的证明; 这回答了Barak (2014)的一个问题。