Activity classification has become a vital feature of wearable health tracking devices. As innovation in this field grows, wearable devices worn on different parts of the body are emerging. To perform activity classification on a new body location, labeled data corresponding to the new locations are generally required, but this is expensive to acquire. In this work, we present an innovative method to leverage an existing activity classifier, trained on Inertial Measurement Unit (IMU) data from a reference body location (the source domain), in order to perform activity classification on a new body location (the target domain) in an unsupervised way, i.e. without the need for classification labels at the new location. Specifically, given an IMU embedding model trained to perform activity classification at the source domain, we train an embedding model to perform activity classification at the target domain by replicating the embeddings at the source domain. This is achieved using simultaneous IMU measurements at the source and target domains. The replicated embeddings at the target domain are used by a classification model that has previously been trained on the source domain to perform activity classification at the target domain. We have evaluated the proposed methods on three activity classification datasets PAMAP2, MHealth, and Opportunity, yielding high F1 scores of 67.19%, 70.40% and 68.34%, respectively when the source domain is the wrist and the target domain is the torso.


翻译:活动分类已成为可穿戴健康跟踪设备的重要功能。随着该领域的创新不断增加,佩戴于不同身体部位的可穿戴设备也开始出现。为了在新的身体位置上执行活动分类,通常需要相应的标注数据,但这样做很昂贵。在本文中,我们提出了一种创新的方法,利用一个已经在惯性测量单元(IMU)数据的源域(即参考身体位置)上进行训练的活动分类器,在不需要新位置的分类标签的情况下,无监督地在新的身体位置(即目标域)上进行活动分类。具体而言,通过同时在源域和目标域测量IMU,复制源域的嵌入,我们训练了一个嵌入模型,以在目标域上执行活动分类。在目标域上的复制嵌入被先前在源域上进行了训练的分类模型所使用,以在目标域上执行活动分类。我们在三个活动分类数据集PAMAP2、MHealth和Opportunity上评估了所提出的方法,在源域为手腕且目标域为躯干时,F1得分分别为67.19% 、70.40%和68.34%。

0
下载
关闭预览

相关内容

神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
73+阅读 · 2020年8月2日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
96+阅读 · 2020年5月31日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【泡泡一分钟】RoomNet:端到端房屋布局估计
泡泡机器人SLAM
18+阅读 · 2018年12月4日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【泡泡一分钟】Matterport3D: 从室内RGBD数据集中训练 (3dv-22)
泡泡机器人SLAM
16+阅读 · 2017年12月31日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年6月2日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【泡泡一分钟】RoomNet:端到端房屋布局估计
泡泡机器人SLAM
18+阅读 · 2018年12月4日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【泡泡一分钟】Matterport3D: 从室内RGBD数据集中训练 (3dv-22)
泡泡机器人SLAM
16+阅读 · 2017年12月31日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员