项目名称: 电压控制Click化学法构筑多通道DNA和核酸适配体电化学传感器

项目编号: No.21305025

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 数理科学和化学

项目作者: 杨微微

作者单位: 哈尔滨工业大学

项目金额: 25万元

中文摘要: 近年来,DNA及核酸适配体电化学生物传感器由于其灵敏度高、选择性好、成本低廉,在生物医学分析、环境监测等领域引起了人们广泛的关注。随着电极阵列与微流控系统等技术的发展,多功能化和智能化将是未来生物传感器发展的必然趋势。因此,不同生物识别元件在电极表面的固定,选择性地对不同电极阵列单元进行生物分子功能化,对复杂生物样品的多通道检测,是未来生物传感器发展亟待解决的问题。本项目旨在利用Click化学法,巧妙利用控制电压方法,对不同电极阵列单元进行选择性地电极活化、控制电极开关(on 或off),从而对不同的电极阵列单元选择性地进行生物分子的表面功能化,进而构筑多通道的DNA或核酸适配体电化学生物传感器,用于多种不同DNA和蛋白质等目标分子同时的检测,为生物医学早期诊断提供理论依据和技术指导。

中文关键词: 电化学;传感器;点击化学;p53;

英文摘要: Electrochemical DNA and aptamer biosensor is versatile, specific and high affinity, observations that have motivated decades of research aimed at adapting biomolecules into a general platform for molecular sensing. Interest in the development of versatile, sensitive, selective, rapid, and cost-effective DNA and aptamer-based electrochemical biosensors for biomedical analysis, environmental monitoring, and the detection of bioterrorism agents is rapidly increasing. Multiplexed detection of biomarkers such as DNA and proteins is of utility for laboratory assays as well as clinical and point-of-care disease diagnostics. A classic biosensor directly transduces ligand-target binding events into a measurable physical readout. "Click" chemistry, addition reaction of alkyne biomolecules to azide derivatives, however, has rarely been employed in the fabrication of biosensors to date. Of note, since the generation of Cu(I) is potential-dependent, potential-assisted ''click'' chemistry can be utilized in the fabrication of a multi-pixel sensor array by varying the potential applied to each pixel. Thus, surface confined molecules can be activated from the chemically inert "OFF" state to its "ON" state by applying an external voltage to each device electrodes in multiplexed electrode. These approaches can potentially be imp

英文关键词: electrochemistry;biosensor;click chemistry;p53;

成为VIP会员查看完整内容
0

相关内容

「图像异常检测 」最新2022研究综述
专知会员服务
86+阅读 · 2022年4月15日
智能无人集群系统发展白皮书
专知会员服务
297+阅读 · 2021年12月20日
专知会员服务
67+阅读 · 2021年9月10日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
27+阅读 · 2021年8月15日
最新《注意力机制与深度学习结合》综述论文
专知会员服务
75+阅读 · 2021年6月17日
专知会员服务
25+阅读 · 2021年4月2日
机器直觉
专知会员服务
26+阅读 · 2020年11月22日
人工智能预测RNA和DNA结合位点,以加速药物发现
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
小贴士
相关主题
相关VIP内容
「图像异常检测 」最新2022研究综述
专知会员服务
86+阅读 · 2022年4月15日
智能无人集群系统发展白皮书
专知会员服务
297+阅读 · 2021年12月20日
专知会员服务
67+阅读 · 2021年9月10日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
27+阅读 · 2021年8月15日
最新《注意力机制与深度学习结合》综述论文
专知会员服务
75+阅读 · 2021年6月17日
专知会员服务
25+阅读 · 2021年4月2日
机器直觉
专知会员服务
26+阅读 · 2020年11月22日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员