Given a convex polyhedral surface P, we define a tailoring as excising from P a simple polygonal domain that contains one vertex v, and whose boundary can be sutured closed to a new convex polyhedron via Alexandrov's Gluing Theorem. In particular, a digon-tailoring cuts off from P a digon containing v, a subset of P bounded by two equal-length geodesic segments that share endpoints, and can then zip closed. In the first part of this monograph, we primarily study properties of the tailoring operation on convex polyhedra. We show that P can be reshaped to any polyhedral convex surface Q a subset of conv(P) by a sequence of tailorings. This investigation uncovered previously unexplored topics, including a notion of unfolding of Q onto P--cutting up Q into pieces pasted non-overlapping onto P, and to continuously folding P onto Q. In the second part of this monograph, we study vertex-merging processes on convex polyhedra (each vertex-merge being in a sense the reverse of a digon-tailoring), creating embeddings of P into enlarged surfaces. We aim to produce non-overlapping polyhedral and planar unfoldings, which led us to develop an apparently new theory of convex sets, and of minimal length enclosing polygons, on convex polyhedra. All our theorem proofs are constructive, implying polynomial-time algorithms.
翻译:鉴于一个 convex 多元形表面 P, 我们定义裁缝为从 P 切开一个包含一个顶点 v 的简单多边形域, 其边界可以通过 Alexandrov 的 Gluing Theorem 向新的 convex 多元面框缝合。 特别是, 由 P 的 digoon 裁剪从 P 的 digoon 内含 digoon 的 digon 裁剪从 P 的 digoon 中分离出一个子组, 由两个相同长度的大地分层组成, 共同端点, 然后可以关闭 。 在此专著的第一部分, 我们主要研究 convex 多元面的裁剪裁操作的特性。 我们显示, P 可以通过裁剪裁序列将一个子集成 。 本次调查发现, Q 向 P Q 折叠成一个折叠的折叠合点, 并持续将 P 的 缩叠成 Q 。 在本文的第二部分, 我们研究一个最小的长度, 我们的 垂直的 直翻翻翻翻的 的 的 直的 缩的 缩的 缩的 缩的 列的 的 的 直的, 直成的 直的 直的 直的 直的 直的 。