The detection of small exoplanets by the radial velocity (RV) technique is limited by various, not well-known, noise sources. As a consequence, current detection techniques often fail to provide reliable estimates of the "significance levels" of detection tests in terms of false alarm rates or of p-values. We aim at designing a RV detection procedure that provides reliable p-values estimates. The method incorporates ancillary information on the noise (e.g., stellar activity indicators), and specific data- or context-driven data (e.g., instrumental measurements, simulations of stellar variability) if available. The detection part of the procedure uses a detection test applied to a standardized periodogram. Standardization allows for an autocalibration of the noise sources with partially unknown statistics (Algorithm 1). The part regarding the estimation of the p-value of the test output is based on dedicated Monte Carlo simulations allowing to handle unknown parameters (Algorithm 2). The procedure is versatile in the sense that the specific couple (test, periodogram) is chosen by the user. We demonstrate by numerical experiments on synthetic and real RV data from the Sun and aCenB that the proposed methodology allows to robustly estimate the p-values. The method also provides a way to evaluate the dependence on modeling errors of the estimated p-values attributed to a reported detection, which is a critical point for RV planet detection at low signal-to-noise ratio. The python algorithms developed in this work are available on GitHub. Accurate estimation of p-values in the case where unknown parameters are involved in the detection process is an important yet newly addressed question in the field of RV detection. Although this work presents a method to this aim, the statistical literature discussed in this paper may trigger the development of other strategies.


翻译:光速(RV)技术对小型远光板的探测受到各种、不为人所知的噪音源的限制。因此,目前的探测技术往往无法提供可靠估计,从假警报率或p值来看,检测检测测试的“亮度”往往无法提供可靠的估计数。我们的目标是设计一个提供可靠的p价值估计的RV检测程序。该方法包含关于噪音(如星际活动指标)和特定数据或背景驱动数据(如工具测量、星际变异性模拟等)的辅助信息,如果有的话,这种数据或背景驱动数据(如,工具测量、模拟等)是有限的。该程序的检测部分使用了标准化时期的检测测试测试测试测试。标准化使得噪音源的自动校准与部分未知的触发数据(Algorithm 1 ) 能够自动校正,关于测试输出值的估计部分基于专门的蒙特卡洛模拟,能够处理未知的参数(Algorithm2 ) 。该程序在用户选择的具体一对数值(测试、期图)实地估算值的实地数值值值值值值中,我们通过数字实验,在合成和Sun-Asimal ad Studal rodeal 中可以提供一种数字的测算数据。我们在Syal-deal 数据中,在合成和Syal-deal-deal demodal deal deal deal deal deal deal deal deal deal deal deal deal deal vial deal deal deal demodreal demodreal vial 中,在Sy videmodal demodal deal a videal videal 中,我们使用了一个从合成和Sy a a a a vide a a a vical a vide a videal a real a real a vide a vidal a vidal deal a videal a videal videal a videal deal a ex ex videal adal adal adal a ex 上,在合成和在合成和在合成和Sladaldaldaldaldal ex vi ex ex vi vi ex ex ex

0
下载
关闭预览

相关内容

不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
70+阅读 · 2022年7月11日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年8月29日
Object Detection in 20 Years: A Survey
Arxiv
48+阅读 · 2019年5月13日
VIP会员
相关VIP内容
不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
70+阅读 · 2022年7月11日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员