Data reduction rules are an established method in the algorithmic toolbox for tackling computationally challenging problems. A data reduction rule is a polynomial-time algorithm that, given a problem instance as input, outputs an equivalent, typically smaller instance of the same problem. The application of data reduction rules during the preprocessing of problem instances allows in many cases to considerably shrink their size, or even solve them directly. Commonly, these data reduction rules are applied exhaustively and in some fixed order to obtain irreducible instances. It was often observed that by changing the order of the rules, different irreducible instances can be obtained. We propose to "undo" data reduction rules on irreducible instances, by which they become larger, and then subsequently apply data reduction rules again to shrink them. We show that this somewhat counter-intuitive approach can lead to significantly smaller irreducible instances. The process of undoing data reduction rules is not limited to "rolling back" data reduction rules applied to the instance during preprocessing. Instead, we formulate so-called backward rules, which essentially undo a data reduction rule, but without using any information about which data reduction rules were applied to it previously. In particular, based on the example of Vertex Cover we propose two methods applying backward rules to shrink the instances further. In our experiments we show that this way smaller irreducible instances consisting of real-world graphs from the SNAP and DIMACS datasets can be computed.


翻译:数据减少规则是算法工具箱中处理具有计算挑战性问题的既定方法。 数据减少规则是一种多式时间算法, 以输入、 输出等效、 通常较少的同一问题为例。 在问题处理前, 应用数据减少规则在许多情况下可以大大缩小其规模, 甚至直接解决这些问题。 通常, 这些数据减少规则是详尽无遗地应用的, 在某些固定的顺序下, 以获得不可复制的事例。 人们经常看到, 通过改变规则的顺序, 可以得到不同的不可复制的例子。 我们提议在不可复制的事例中“ 不适用” 数据减少规则, 从而扩大这些结果, 然后再应用数据减少规则来缩小它们。 我们表明, 这种有点反直观性的做法可以导致大大缩小其规模, 甚至直接地减少规则。 取消数据减少规则的过程不限于“ 倒退” 适用于预处理期间的情况。 相反, 我们制定所谓的后向规则, 基本上可以消除数据减少规则, 但是不使用任何关于数据减少规则的“ 无法复制” 信息, 然后再次应用数据减少规则来缩小它们。 我们用这个“ 递增缩” 模式, 。 。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年8月19日
Arxiv
0+阅读 · 2022年8月18日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员