We study the Radial Basis Function (RBF) approximation to differential operators on smooth tensor fields defined on closed Riemannian submanifolds of Euclidean space, identified by randomly sampled point cloud data. We establish the spectral convergence for the classical pointwise RBF discrete non-symmetric approximation of Laplacians. Numerically, we found that this formulation produces a very accurate estimation of leading spectra with large enough data, which leads to a computationally expensive task of solving an eigenvalue problem of not only large but also dense, non-symmetric matrix. However, when the size data is small and/or when the local tangent plane of the unknown manifold is poorly estimated, the accuracy deteriorates. Particularly, this formulation produces irrelevant eigenvalues, in the sense that they are not approximating any of the underlying Laplacian spectra. While these findings suggest that the RBF pointwise formulation may not be reliable to approximate Laplacians for manifold learning, it is still an effective method to approximate general differential operators on smooth manifolds for other applications, including solving PDEs and supervised learning. When the manifolds are unknown, the error bound of the pointwise operator estimation depends on the accuracy of the approximate local tangent spaces. To improve this approximation accuracy, we develop a second-order local SVD technique for estimating local tangent spaces on the manifold that offsets the errors induced by the curvature in the classical first-order local SVD technique. For manifold learning, we introduce a symmetric RBF discrete approximation of the Laplacians induced by a weak formulation on appropriate Hilbert spaces. We establish the convergence of the eigenpairs of both the Laplace-Beltrami operator and Bochner Laplacian in the limit of large data, and provide supporting numerical examples.


翻译:我们通过随机抽样的点云数据,对位于Euclidean空间封闭的里曼尼亚磁带上的平滑电压场操作员的拉度基础函数(RBF)近似值进行了研究。我们为古典点点式RBF离散非对称近似值拉普拉西亚。从数字上看,我们发现这一配方对领先光谱得出非常准确的估计,并有足够的数据,这导致一个计算成本高昂的任务,即解决一个不仅大而且密集、非对称矩阵的利更值问题。然而,当规模数据小和(或)当未知元件的本地色平面平流平面平面数据估计值不甚高时,精确度就会恶化。当我们通过本地的纸质平面平面平面平流层平流层平流层平流层平流时,我们还是一个有效的方法,用来为其他应用的平滑度平滑度操作员进行近距离分析,包括解决金质平面平面平面平面平流法的平面平面平面平流,然后学习S的操作器平坦度平坦度平流,我们了解S的精确度平面平坦度平坦度平坦度数据,然后学习S的S的平流层平流压数据。当我们了解S的平流层平流路路路的平流数据,然后学习了S的精确度平流压数据,我们掌握了S的平流数据,然后学习了S。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
64+阅读 · 2021年6月18日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员